Direkt zum Inhalt

Pfadnavigation

  1. Startseite
  2. Biologie Abitur
  3. 3 Stoffwechsel und Energieumsatz
  4. 3.4 Aufbauender Stoffwechsel
  5. 3.4.1 Die Fotosynthese ist die Grundlage des Lebens
  6. Fotosynthesepigmente

Fotosynthesepigmente

Fotosynthesepigmente sind Pigmente, die Licht absorbieren und mithilfe der Lichtenergie von einem energiearmen Grundzustand in einen energiereichen, angeregten Zustand übergehen. Beim Zurückspringen in den Grundzustand – der angeregte Zustand ist zwar energiereich aber instabil – wird die Energie in Form von Photonen an ein bestimmtes Chlorophyll a-Molekül, ebenfalls ein Fotosynthesepigment, abgegeben, das sich in einem Reaktionszentrum befindet. Mithilfe dieser Energie findet dann die erste lichtbetriebene, chemische Reaktion statt, eine Redoxreaktion.Diejenigen Pigmente, die das Licht absorbieren und dessen Energie bis zu den Pigmenten im Reaktionszentrum weiterleiten, heißen Antennenpigmente. Antennenpigmente sind verschiedene Chlorophyll-Protein-Komplexe, Carotinoide und Phycobiline. Jedes fotosynthetische Chlorophyll als Reaktionszentrum ist von etwa 300 verschiedenen, Licht sammelnden Antennenpigmenten umgeben.
Die gesamte Struktur, Antennenpigmente und Reaktionszentrum, wird Fotosystem genannt.

Der deutsche Botaniker THEODOR WILHELM ENGELMANN (1843-1909) konnte 1883 mit seinen Versuchen mit einer fadenförmigen Alge die Fotosyntheseaktivität in den verschiedenen Bereichen des sichtbaren Lichts nachweisen. Diese entspricht im Wesentlichen den Absorptionsmaxima der Fotosynthesepigmente bzw. dem Zusammenwirken der Farbstoffe im Fotosystem. Chlorophylle stellen die Hauptpigmente in allen fotoautotrophen Organismen dar. Carotinoide und Chlorophylle sind vorwiegend als Antennenpigmente zur optimalen Lichtabsorption im Rahmen des Antennenkomplexes im Fotosystem vertreten.

Schule wird easy mit KI-Tutor Kim und Duden Learnattack

  • Kim hat in Deutsch, Mathe, Englisch und 6 weiteren Schulfächern immer eine von Lehrkräften geprüfte Erklärung, Video oder Übung parat.
  • 24/7 auf Learnattack.de und WhatsApp mit Bildupload und Sprachnachrichten verfügbar. Ideal, um bei den Hausaufgaben und beim Lernen von Fremdsprachen zu unterstützen.
  • Viel günstiger als andere Nachhilfe und schützt deine Daten.
Jetzt 30 Tage risikofrei testen
Your browser does not support the video tag.

Der deutsche Physiologe THEODOR WILHELM ENGELMANN beleuchtete 1883 eine fadenförmige Alge (Oedogonium) und ermittelte so zum ersten Mal das Wirkungsspektrum der Fotosynthese. Bei dem Experiment schickte er weißes Licht durch ein Prisma, wodurch das Licht in die verschiedenen Wellenlängen aufgetrennt wurde und so die Alge in verschiedenen Bereichen bestrahlte. Zugesetzte sauerstoffliebende (aerophile) Bakterien zeigten ENGELMANN durch ihre plötzliche Aktivität an, bei welchen Wellenlängen des sichtbaren Lichts am meisten Sauerstoff hergestellt wurde und damit die Fotosyntheseaktivität am größten war. Die im Experiment ermittelten vorwiegend roten und blauen Bereiche des sichtbaren Lichts entsprechen dem Wirkungsspektrum der Fotosynthese und den möglichen Absorptionsmaxima der Fotosynthesepigmente bei den eingesetzten Algen.

Fotosynthesepigmente werden für die Lichtabsorption und die damit verbundene Umwandlung der Lichtenergie in chemische Energie im Rahmen der Fotosynthese benötigt. Diese Farbstoffe sind in den Thylakoidmembranen (Stroma- und Granathylakoide) der Chloroplasten eingelagert und bilden ein sogenanntes Fotosystem, das aus Reaktionszentrum und Antennenkomplex (LHC: L ight H arvesting C omplex) besteht. Durch Chromatografie (Trennverfahren) kann man die einzelnen Fotosynthesepigmente auftrennen. Es lassen sich die Farbstoffe Chlorophylle, Carotinoide und Phycobiliproteide isolieren.

  • Spektrum der Fotosynthese

Chlorophylle

Chlorophylle (Blattgrün) sind die grünen Farbstoffe der grünen Pflanzen, fotosynthetisierender Algen und bestimmter Bakterien und stellen in allen fotoautotrophen Organismen das wichtigste absorbierende Pigment für die Fotosynthese dar.
Die Lichtenergie der Sonne wird im Rahmen der Fotosynthese durch die Absorption in die chemische und für Stoffwechselreaktionen allgemein verwertbare Energie von ATP (Adenosintriphosphat) und in die Reduktionsäquivalente NADPH + H+ (Nicotinamidadenindinucleotidphosphat) umgewandelt. Bei höheren Pflanzen sind Chlorophylle in der inneren Membran (Thylakoidmembran) der Chloroplasten lokalisiert. Die Befestigung in der Membran erfolgt durch den lipophilen Phytol-Rest.

  • Chlorophyll a und Chlorophyll b

1918 bestimmten RICHARD WILLSTÄTTER (1872-1942) und ARTHUR STOLL (1887-1971) die Struktur des Chlorophylls, nachdem sie 1913 die Ähnlichkeit zu Hämoglobin nachgewiesen hatten.
Chlorophylle bestehen aus einem Porphyrinring, der durch 4 über Methin-Brücken miteinander verknüpfte Pyrrolringe gebildet wird, sowie Magnesium als Zentralatom. Durch ihre Ableitung vom Porphyringerüst besteht eine strukturelle Verwandtschaft mit dem Häm der Hämoglobine, Myoglobine und Cytochrome. Diese weisen jedoch ein zweiwertiges Eisenion als Zentralatom auf.

Die einzelnen Chlorophylle unterscheiden sich durch Abwandlungen der Seitengruppen des Ringgerüsts, d. h. verschiedene Reste an den Pyrrolringen (Substitutionsmuster) und die Art der alkoholischen Isoprenseitenkette (z. B. Phytol). Man unterscheidet Chlorophylle a, b, c, d und e. Die Hauptrolle bei allen zur Fotosynthese befähigten Organismen spielt das Chlorophyll a. Bei höheren Pflanzen und einigen Algen ist zusätzlich das Chlorophyll b verbreitet (ca. 1/3 der Konzentration von Chlorophyll a). Die anderen Chlorophyllarten sind bei einzelnen Organismengruppen anzutreffen, so z. B. Chlorophyll c bei Braunalgen, welches durch einen anderen chemischen Aufbau im Vergleich zu Chlorophyll a und b wasserlöslich ist.

Bei Chlorophyll a und b ist die Propionseitenkette des Pyrrolrings D mit einem langkettigen Alkohol aus 20 Kohlenstoffatomen verestert (Phytol). Dieser chemische Aufbau ist für die Lipidlöslichkeit der beiden Chlorophylle und die Verankerung in der Thylakoidmembran verantwortlich. Chlorophyll b unterscheidet sich lediglich durch eine Formyl- statt einer Methylgruppe am Pyrrolring B vom Chlorophyll a. Diese Veränderung im chemischen Aufbau hat eine Auswirkung auf die Farbe von Chlorophyll a (blaugrün) und Chlorophyll b (gelbgrün) sowie auf die Lage der Absorptionsmaxima der beiden Chlorophyllarten. Beide absorbieren vorwiegend Licht im blauen und roten Bereich des sichtbaren Lichts, wobei die mittleren Wellenlängen von den Chlorophyllen a und b nicht abgedeckt werden („Grünlücke“). Chlorophyll b hat im Vergleich zum Chlorophyll a leicht versetzte Absorptionsmaxima und verkleinert so die „Grünlücke“. Deswegen kommt Chlorophyll b als Antennenpigment (= akzessorisches Pigment) im Antennenkomplex vor. Hier zeigt sich, dass die Absorption des Sonnenlichts durch die Chlorophylle und die damit verbundene Bereitstellung für fotochemische Arbeit nicht optimal sind.

Einige spezielle Eigenschaften der Chlorophylle sorgten aber im Laufe der Evolution dafür, dass sie sich als Hauptpigment für die Fotosynthese durchgesetzt haben:

 
  • Chlorophylle können die absorbierte Lichtenergie auf andere Moleküle übertragen und von anderen Molekülen aufnehmen. Dabei besitzen die Empfänger eine größere Wellenlänge als die Spendermoleküle und wirken so in ihrer Gesamtheit als Licht- bzw. Energiefalle.
 
  • Sie besitzen in ihrem chemischen Aufbau eine große Anzahl an konjugierten Doppelbindungen, d. h. es sind viele bewegliche Elektronen vorhanden, die sich durch einen geringen Energieaufwand auf ein höheres Energieniveau bringen lassen.
 
  • Besondere Chlorophyll a-Moleküle, deren Absorptionsmaxima bei 700 nm bzw. 680 nm liegen („P 700“, „P 680“), besitzen als Reaktionszentren der beiden Fotosysteme die Möglichkeit, bei Belichtung vorübergehend Elektronen auf ein höheres Energieniveau abzugeben. Diese Fähigkeit ist für den Elektronentransport bei den lichtabhängigen Reaktionen und somit für den gesamten Ablauf der Fotosynthese entscheidend.

Fotoautotrophe Bakterien besitzen ebenfalls Chlorophylle, die sich in ihrem chemischen Aufbau nur gering von den Chlorophyllen der Eukaryoten unterscheiden und als Bacteriochlorophylle bezeichnet werden. Es sind die Bacteriochlorophylle a bis d bekannt. Sie unterscheiden sich von den Chlorophyllen der Eukaryoten durch die Reduktion eines Pyrrolrings und die Veresterung mit Farnesol (Alkohol mit 15 Kohlenstoffatomen) statt mit Phytol (Ausnahme Bacteriochlorophyll a). Dadurch sind die fotoautotrophen Bakterien in der Lage, sehr langwelliges Rot zu absorbieren (z. T. bis 900 nm), das für Ablauf und Effektivität der Fotosynthese bei den Bakterien in ihren Lebensräumen vorteilhaft ist.

Carotinoide

Carotinoide, die wegen ihrer Fettlöslichkeit auch Lipochrome genannt werden, sind lipophile Farbstoffe, die durch eine gelbe, orange oder rote Farbe gekennzeichnet sind. Die Farbigkeit beruht auf dem System mehrerer konjugierter Doppelbindungen, die je nach Anzahl und Lage das Licht bestimmter Wellenlängen absorbieren (bis über 500 nm, blauer Bereich des sichtbaren Lichts). Carotinoide kommen nicht nur bei autotrophen Organismen sondern auch bei Tieren und Menschen vor, wobei diese alle aus pflanzlicher Nahrung in den Organismus gelangen, so z. B. in Gefieder, Auge, Milch oder Eidotter. Auch die rote Farbe eines gekochten Hummers ist auf das Carotinoid Astaxanthin zurückzuführen. Alle stammen aber aus pflanzlicher Nahrung, da Carotinoide nur von Pflanzen innerhalb der Chloro- oder Chromoplasten (Plastiden) gebildet werden können.

Die Carotinoide höherer Pflanzen kommen in Laubblättern, Früchten, Sprossachsen, Wurzeln, Staubblättern, Pollen und Samen vor. Die Farbe der Carotinoide in den Chloroplastenmembranen grüner Laubblätter tritt auffällig im Herbstlaub hervor, wenn beim Welken der Laubblätter das Chlorophyll abgebaut wird und die Chloroplasten in Chromoplasten umgewandelt werden. Ähnliches passiert bei der Reifung von grünen zu farbigen Früchten. Beispiele für Carotinoide in Früchten sind

  • Lycopin (in Tomate, Hagebutte, Rose),
  • Capsanthin (in rotem Pfeffer) und
  • Capsorubin (in Paprika).

Bei großer Anreicherung von Carotinoiden liegen sie nicht mehr als Lipidtropfen an die Membran gebunden vor, sondern werden als Kristalle ins Cytoplasma ausgestoßen. So gelangen sie auch in pflanzliches Speichergewebe, wie beispielsweise bei der Möhre. Vereinzelt kommen Carotinoide auch als Blütenfarbstoff vor (z. B. Krokus, Veilchen, Stiefmütterchen). Eine Ausnahme ist das Vorkommen in Samen beim Maissamen.

Carotinoide besitzen meistens 40 Kohlenstoffatome mit stark konjugierten Doppelbindungen. Die 40 Kohlenstoffatome bestehen oft aus zwei symmetrischen Einheiten zu je 20 Kohlenstoffatomen. Carotinoide lassen sich in Carotine und Xanthophylle einteilen.
Carotine sind reine Kohlenwasserstoffe mit oranger bis roter Farbe und weisen keinen Sauerstoff auf. Das bekannteste Carotin ist das β-Carotin (Pro-Vitamin A), das bei Pflanzen, Algen und Cyanobakterien vorkommt. Durch die Halbierung des Moleküls und die Anlagerung einer Hydroxylgruppe entstehen aus dem β-Carotin zwei Moleküle Vitamin A.
Xanthophylle sind sauerstoffhaltige Derivate der Carotine. So kommt z. B. Lutein bei Pflanzen und Grünalgen vor. Fucoxanthin ist dagegen bei Braunalgen isoliert worden.

Carotinoide absorbieren im blauen Bereich (Wellenlänge über 500 nm) des sichtbaren Lichts, also bei den Wellenlängen, bei denen Chlorophylle eine geringe Absorption aufweisen (Verkleinerung der Grünlücke). Sie kommen daher in den Fotosystemen als Antennenpigmente im Antennenkomplex vor (LHC). Allerdings wurde in den letzten Jahren festgestellt, dass sie die Lichtenergie nur mit einer geringen Effektivität auf andere Pigmente übertragen. Carotinoide schützen aber zusätzlich Membranbestandteile vor Angriffen des molekularen Sauerstoffs (fotooxidative Zerstörung) und ist somit für die Funktion der Fotosysteme von Bedeutung.
In Blütenblättern und Früchten sind Carotinoide als Lockfarben für Tiere von Bedeutung. Wichtig ist auch die Funktion einiger Carotinoide als Provitamin (Carotin). Heute vielfach auch künstlich hergestellte Carotinoide werden in Medikamenten als Vitamin A-Vorstufen, als Nahrungsmittelfarbstoffe (Käse, Fruchtsäfte) und als Futtermittelzusatz verwendet.

  • Carotinoide

Phycobiliproteine

Diese Fotosynthesepigmente kommen vor allem bei Cyanobakterien und Rotalgen vor. In unterschiedlichen Mischungsverhältnissen von Phycocyanen (blau) und Phycoerythrinen (rot) überdecken sie die Chlorophylle und geben so den genannten Organismen die charakteristische Farbe. Wie aus dem Namen abzuleiten ist, bestehen diese wasserlöslichen Farbstoffe aus einem Proteinanteil und den Farbstoffen Phycocyanobilin bzw. Phycoerythrobilin. Das sind offenkettige Tetrapyrrole, ähnlich den Gallenfarbstoffen, die durch den Abbau von Hämoglobin entstehen.

Phycobiliproteine kommen als Bestandteile der Antennenpigmente an der Thylakoidoberfläche vor und bilden in ihrer Gesamtheit sogenannte Phycobilisomen (z. B. bei Rotalgen). Ihre Absorptionsleistungen sind vom chemischen Aufbau abhängig (Tetrapyrrolanteil, Bindung und Bau des Proteins). Sie absorbieren Lichtenergie in dem Bereich, in dem Chlorophylle und Carotinoide nur geringe Absorptionsleistungen haben und verkleinern so die Grünlücke noch weiter. So können z. B. Rotalgen auch noch in sehr großen Wassertiefen vorkommen und Fotosynthese betreiben. Bemerkenswert ist dabei, dass sie meist einen direkten Kontakt zu Chlorophyll a-Molekülen haben und die Energieübertragung mit rund 95 % sehr effektiv ist.

Im Bereich des grünen Lichts absorbieren Fotosynthesepigmente kaum. Deshalb sehen die Blätter grün aus.

  • Phycobiliproteide
Lernhelfer (Duden Learnattack GmbH): "Fotosynthesepigmente." In: Lernhelfer (Duden Learnattack GmbH). URL: http://www.lernhelfer.de/schuelerlexikon/biologie-abitur/artikel/fotosynthesepigmente (Abgerufen: 09. June 2025, 07:02 UTC)

Suche nach passenden Schlagwörtern

  • Video
  • Chlorophyll
  • Absorptionsmaxima
  • Chlorophyll a
  • Carotinoide
  • ENGELMANN
  • Chromatografie
  • Xanthophylle
  • Reaktionszentrum
  • Fotosystemkomplex
  • Reaktionszentren
  • Antennenkomplex
  • Carotine
  • Experiment
  • Pflanzenfarbstoffe
  • LHC
  • Absorption
  • Farbstoffe
  • Fotosynthesepigmente
Jetzt durchstarten

Lernblockade und Hausaufgabenstress?

Entspannt durch die Schule mit KI-Tutor Kim und Duden Learnattack.

  • Kim hat in Deutsch, Mathe, Englisch und 6 weiteren Schulfächern immer eine von Lehrkräften geprüfte Erklärung, Video oder Übung parat.
  • 24/7 auf Learnattack.de und WhatsApp mit Bildupload und Sprachnachrichten verfügbar. Ideal, um bei den Hausaufgaben und beim Lernen von Fremdsprachen zu unterstützen.
  • Viel günstiger als andere Nachhilfe und schützt deine Daten.

Verwandte Artikel

Fotosynthesepigmente

Fotosynthesepigmente sind Pigmente, die Licht absorbieren und mithilfe der Lichtenergie von einem energiearmen Grundzustand in einen energiereichen, angeregten Zustand übergehen. Beim Zurücksprung in den Grundzustand - der angeregte Zustand ist zwar energievoll aber instabil - wird die Energie in Form von Photonen an ein bestimmtes Chlorophyll-a-Molekül, ebenfalls ein Fotosynthesepigment, abgegeben, dass sich in einem Reaktionszentrum befindet. Mithilfe dieser Energie findet dann die erste lichtbetriebene, chemische Reaktion statt, eine Redoxreaktion.Diejenigen Pigmente, die das Licht absorbieren und dessen Energie bis zu den Pigmenten im Reaktionszentrum weiterleiten, heißen Antennenpigmente. Antennenpigmente sind verschiedene Chlorophyll-Protein-Komplexe, Carotinoide und Phycobiline. Jedes fotosynthetische Reaktionszentrumschlorophyll ist von etwa 300 verschiedenen, lichtsammelnden Antennenpigmenten umgeben.
Die gesamte Struktur, Antennenpigmente und Reaktionszentrum, wird Fotosystem genannt.

Der deutsche Botaniker THEODOR WILHELM ENGELMANN (1843 – 1909) konnte 1883 mit seinen Versuchen mit einer fadenförmigen Alge die Fotosyntheseaktivität in den verschiedenen Bereichen des sichtbaren Lichtes nachweisen. Diese entspricht im Wesentlichen den Absorptionsmaxima der Fotosynthesepigmente bzw. dem Zusammenwirken der Farbstoffe im Fotosystem. Chlorophylle stellen die Hauptpigmente in allen fotoautotrophen Organismen dar. Carotinoide und Chlorophylle sind vorwiegend als Antennenpigmente zur optimalen Lichtabsorption im Rahmen des Antennenkomplexes im Fotosystem vertreten.

Fotosynthese der Bakterien

Fototrophe Bakterien sind fotosynthetisch aktive Mikroorganismen, die die Lichtenergie als Energiequelle nutzen. Zu ihnen gehören alle prokaryotischen Mikroorganismen wie Cyanobakterien, Anoxyphotobacteria (anoxygene fototrophe Bakterien) und Archaebakterien. Sie sind typische Wasserbakterien in Süß-, Brack- und Salzwasser sowie feuchten Böden und überschwemmten Feldern. Sie können beweglich oder unbeweglich sein und sind stets braun, rötlich (purpur), grün oder gelblich gefärbt. Sie sind gram-negativ. Es lassen sich zwei Gruppen unterscheiden: Purpur-, Grüne und Heliobakterien einerseits und die Cyanobakterien andererseits. Neben den Vertretern der Domäne der Bakterien können auch die Archaebakterien Fotosynthese betreiben.
Die Fotosynthese der Bakterien war in ihrer ursprünglichen Form an die sauerstofffreie Biosphäre angepasst (anaerob). Archaebakterien verwenden darum beispielsweise als Fotosynthesepigment kein Chlorophyll sondern Bakterienrhodopsin zur Lichtabsorption. Typische Pigmente des fototrophen Stoffwechsels sind ansonsten Bakterienchlorophylle und bestimmte Carotinoide. Im engeren Sinne grenzt man Fotosynthesebakterien von Cyanobakterien und Chloroxybakterien ab. Fotosynthesebakterien im engeren Sinne unterscheiden sich u. a. durch Aufbau und Ablauf der chemischen Reaktionen. So besitzen sie z. B. nur das Fotosystem I, Coenzym NAD+, Bakterienchlorophylle als Fotosynthesepigmente und können außerdem keinen Sauerstoff herstellen. Während Aufbau und Vorgänge der Cyanobakterien denen der höheren Pflanzen entsprechen (z. B. auch Sauerstoffbildung), nehmen Chloroxybakterien eine Zwischenstellung in der Evolution der Fotosynthese ein.

Plastom und Chondrom

Die genetische Information eines eukaryotischen Organismus ist vorwiegend in Form von DNA in den Chromosomen eines jeden Zellkerns lokalisiert. Außerdem enthalten Plastiden und Mitochondrien DNA und somit Erbinformation, und auch im Cytoplasma können Erbfaktoren vorliegen. Die Weitergabe solcher genetischen Informationen wird als extrachromosomale (außerhalb der Chromosomen stattfindende) Vererbung bezeichnet. Die Gesamtheit der Chromosomen-DNA heißt auch Genom, die DNA außerhalb des Zellkerns bildet das Plasmon. Nach der Unterscheidung von Plastiden- und Mitochondrien-DNA spricht man daher von Plastom als Gesamtheit der Gene aller Plastiden einer Zelle und Chondrom als Gesamtheit der Erbinformation aller Mitochondrien einer Zelle.
Grundlegend trägt die DNA von Mitochondrien und Plastiden zur Zellfunktion der Eukaryotenzelle bei. Besonders Enzyme des Energiestoffwechsels sind in ihnen codiert. Jedoch sind Mitochondrien und Plastiden nicht selbstständig lebensfähig, sondern funktionieren nur im engen Zusammenspiel mit dem Zellkern. Beispielsweise sind Teile der Mitochondrienmembran im Kern codiert und müssen erst in die Organellen transportiert werden.

Calvin-Zyklus – genauer betrachtet

Der nach dem Entdecker benannte CALVIN-Zyklus beschreibt innerhalb der Fotosynthese der Pflanzen den Weg des Kohlenstoffdioxids bis zur Entstehung eines Kohlenhydrats. Für den Ablauf der chemischen Reaktionen, die im Stroma des Chloroplasten stattfinden, werden als Voraussetzungen lediglich ATP als Energiequelle und NADPH + H+ als Reduktionsmittel benötigt. Licht ist für diesen Vorgang nicht nötig. Die komplexen Vorgänge werden in drei Phasen eingeteilt. Zunächst erfolgt die Fixierung des Kohlenstoffdioxids an einen Akzeptor (Ribulose-1,5-bisphosphat). Das erste daraus entstehende stabile Produkt ist ein Molekül mit drei Kohlenstoffatomen: Glycerinsäure-3-phosphat. Pflanzen, die auf diesem Weg Kohlenhydrate herstellen, nennt man daher C3-Pflanzen. Neben diesem Weg haben Fotosynthesespezialisten in Anpassung an trockene Umweltbedingungen Mechanismen entwickelt, Kohlenstoffdioxid in ihren Blattgeweben vorläufig zu konzentrieren.
In einer zweiten Phase erfolgt über Zwischenprodukte unter Verbrauch von ATP und mithilfe von NADPH + H+ die Reduktion der Glycerinsäure-3-phosphat zu Glycerinaldehyd-3-phosphat. Einige Moleküle dieses entstehenden Kohlenhydrats werden aus dem Kreisprozess ausgeschleust und sind die Grundlage für die Bildung weiterer Kohlenhydrate, Fette und Eiweiße u. a. zur Speicherung von Energie. Die verbleibenden Glycerinaldehyd-3-phosphat-Moleküle werden im Kreislauf zur Regeneration des Akzeptors unter nochmaligem Verbrauch von ATP verwendet.
Fotosynthetisch aktive Pflanzen zeigen auch einen Gaswechsel (Sauerstoffverbrauch und Kohlenstoffdioxidabgabe), der im Licht wesentlich aktiver abläuft als im Dunkeln und wegen seiner Ähnlichkeit zur Atmung als Lichtatmung bzw. Fotorespiration bezeichnet wird.

Julius Sachs

* 02.10.1832 Breslau
† 29.05.1897 Würzburg

Er war Begründer der modernen Pflanzenphysiologie und arbeitete besonders über Probleme des Wachstums von Pflanzen. Es gelang ihm u. a. festzustellen, dass Stärke, die durch Kohlenstoffdioxidassimilation in den Chlorophyllkörnern gebildet wird, im Dunkeln verschwindet und im Licht von Neuem auftritt. Den Nachweis führte er mit der nach ihm benannten Iodprobe (Iodprobe nach SACHS).

Ein Angebot von

Footer

  • Impressum
  • Sicherheit & Datenschutz
  • AGB
© Duden Learnattack GmbH, 2025