Direkt zum Inhalt

Pfadnavigation

  1. Startseite
  2. Physik Abitur
  3. 3 Thermodynamik
  4. 3.2 Thermisches Verhalten von Körpern und Stoffen
  5. 3.2.5 Die Gasgesetze
  6. Zustandsgleichung für das ideale Gas

Zustandsgleichung für das ideale Gas

Zwischen Druck p, Volumen V und absoluter Temperatur T des idealen Gases besteht folgender Zusammenhang:

p ⋅ V T = konstant oder p 1 ⋅ V 1 T 1 = p 2 ⋅ V 2 T 2

Für ein reales Gas ist die Zustandsgleichung anwendbar, wenn sich dieses näherungsweise wie das ideale Gas verhält. Das ist für fast alle Gase bei Zimmertemperatur der Fall.

Bezieht man die Gaskonstanten und andere Konstanten mit ein, so kann man die allgemeine Zustandsgleichung auch noch in weiteren Formen schreiben.

Schule wird easy mit KI-Tutor Kim und Duden Learnattack

  • Kim hat in Deutsch, Mathe, Englisch und 6 weiteren Schulfächern immer eine von Lehrkräften geprüfte Erklärung, Video oder Übung parat.
  • 24/7 auf Learnattack.de und WhatsApp mit Bildupload und Sprachnachrichten verfügbar. Ideal, um bei den Hausaufgaben und beim Lernen von Fremdsprachen zu unterstützen.
  • Viel günstiger als andere Nachhilfe und schützt deine Daten.
Jetzt 30 Tage risikofrei testen
Your browser does not support the video tag.

Die Luft in einem Wasserball oder in einer Luftmatratze (Bild 1) hat bei einer bestimmten Temperatur ein bestimmtes Volumen und einen bestimmten Druck. Liegt ein solcher Ball oder eine Luftmatratze in der prallen Sonne, so verändert sich die Temperatur der Luft in ihnen. Damit ändern sich auch Volumen und Druck.

Allgemein wird der Zustand eines Gases durch die drei Größen Druck, Volumen und Temperatur beschrieben. Man nennt sie deshalb auch Zustandsgrößen.
In vielen Fällen, z. B. bei den oben genannten Beispielen, ändern sich Druck, Volumen und Temperatur eines Gases gleichzeitig. Die Zusammenhänge werden mit einer Zustandsgleichung beschrieben. Da diese exakt nur für das ideale Gas gilt, wird sie auch als Zustandsgleichung für das ideale Gas bezeichnet. Man findet auch die Bezeichnungen allgemeine Zustandsgleichung für das ideale Gas oder thermische Zustandsgleichung.

  • Druck, Volumen und Temperatur der Luft in einem Ball hängen eng miteinander zusammen.

Spezialfälle der allgemeinen Zustandgleichung

Aus der genannten Zustandsgleichung lassen sich für konstanten Druck, für konstantes Volumen und für konstante Temperatur spezielle Zustandsgleichungen ableiten. Es handelt sich dabei um die Gesetze von AMONTONS, von GAY-LUSSAC sowie von BOYLE und MARIOTTE. Sie sind in der nachfolgenden Übersicht zusammengestellt.

Bild

Nähere Erläuterungen zu den drei Spezialfällen der Zustandsgleichung für das ideale Gas sind unter den betreffenden Stichwörtern zu finden.

Die allgemeine Zustandsgleichung in anderer Form

Die Zustandsgleichung in der Form
p ⋅ V T =   konstant (1)
wirft die Frage auf, welchen Wert diese Konstante hat und was sich physikalisch dahinter verbirgt. Setzt man für den Druck p den Normdruck, für die Temperatur T die Normtemperatur und für das Volumen V das Normvolumen ein, so erhält man:

p 0 ⋅ V 0 T 0 = 101,325   kPa ⋅ 22,414 ⋅ 10 − 3   m 3 273 ,15 K ⋅ mol = 8,314 J K ⋅ mol

Diese Konstante wird als universelle Gaskonstante R oder als allgemeine Gaskonstante R bezeichnet. Ihr genauer Wert beträgt:
R = 8,314   472   J K ⋅ mol
Beträgt das Volumen V = n ⋅ V 0 , wobei n die Stoffmenge ist, dann ergibt sich aus:
p 0 ⋅ V 0 T 0 = R der Term p 0 ⋅ V 0 T 0 ⋅ n = R oder p 0 ⋅ V 0 T 0 = n ⋅ R Da die Konstante für beliebige p ,   V und T konstant ist und den gleichen Wert R hat , kann man auch schreiben: p ⋅ V T = n ⋅ R oder in der gebräuchlicheren Form: p ⋅ V = n ⋅ R ⋅ T (2) Dabei bedeuten: p Druck des Gases V Volumen des Gases n Stoffmenge in mol R universelle Gaskonstante T absolute Temperatur
In der Physik arbeitet man im Unterschied zur Chemie häufiger mit der Masse als mit der Stoffmenge. Deshalb formt man die genannte Gleichung (2) so um, dass dort die Masse erscheint. Dazu nutzt man statt der universellen Gaskonstanten die spezifische Gaskonstante. Beide sind folgendermaßen miteinander verknüpft:
R = m n ⋅ R S Setzt man diesen Term in Gleichung (2) ein , so erhält man eine dritte Form der allgemeinen Zustandsgleichung: p ⋅ V = m ⋅ R S ⋅ T (3) m Masse des Gases R S spezifische Gaskonstante

Die spezifische Gaskonstante ist eine Stoffkonstante, die für jedes Gas angegeben werden kann, dass sich näherungsweise wie das ideale Gas verhält. Die Werte können Tabellenwerken entnommen werden.

  • BWS-PHY2-0293-03.mcd (22.17 KB)

Eine vierte Variante der allgemeinen Zustandsgleichung ergibt sich aus Variante (2), wenn man statt der Stoffmenge die Teilchenanzahl einbezieht. Ausgangspunkt der Herleitung ist die Gleichung:

p ⋅ V = n ⋅ R ⋅ T (2) Für die Stoffmenge n kann man auch schreiben: n = N N A , wobei N die Teilchenanzahl und N A die AVOGADRO-Konstante ist . Diese Konstante lässt sich auch mithilfe der universellen Gaskonstanten R und der BOLTZMANN-Konstanten k ausdrücken: N A = R k Damit erhält man für die Stoffmenge n = N N A = N ⋅ k R Setzt man das in Gleichung (2) ein , dann ergibt sich: p ⋅ V = N ⋅ k R ⋅ R ⋅ T oder vereinfacht: p ⋅ V = N ⋅ k ⋅ T (4) N Teilchenanzahl k BOLTZMANN-Konstante

Welche der vier angegebenen Formen der allgemeinen Zustandsgleichung man nutzt, hängt von den jeweiligen Bedingungen ab. In den Berechnungsbeispielen findet man unterschiedliche Varianten. Zu beachten ist dabei immer: Die Gleichung gilt exakt für das ideale Gas und ist auch für andere Gase anwendbar, wenn sie sich näherungsweise wie das ideale Gas verhalten.

  • BWS-PHY2-0293-06.mcd (10.58 KB)
Lernhelfer (Duden Learnattack GmbH): "Zustandsgleichung für das ideale Gas." In: Lernhelfer (Duden Learnattack GmbH). URL: http://www.lernhelfer.de/schuelerlexikon/physik-abitur/artikel/zustandsgleichung-fuer-das-ideale-gas (Abgerufen: 29. June 2025, 19:25 UTC)

Suche nach passenden Schlagwörtern

  • allgemeine Gasgleichung
  • Berechnung
  • spezielle Zustandsgleichungen
  • spezifische Gaskonstante
  • Teilchenanzahl
  • universelle Gaskonstante
  • Mariotte
  • Normdruck
  • allgemeine Gaskonstante
  • allgemeine Zustandsgleichung des idealen Gases
  • Gay-Lussac
  • Normvolumen
  • Stoffmenge
  • spezielle Zustandsänderungen
  • Temperatur des Gases
  • universelle Gasgleichung
  • allgemeine thermische Zustandsgleichung des idealen Gases
  • Druck des Gases
  • Simulation
  • Rechenbeispiel
  • Volumen des Gases
  • Boyle
  • Normtemperatur
  • Amontons
Jetzt durchstarten

Lernblockade und Hausaufgabenstress?

Entspannt durch die Schule mit KI-Tutor Kim und Duden Learnattack.

  • Kim hat in Deutsch, Mathe, Englisch und 6 weiteren Schulfächern immer eine von Lehrkräften geprüfte Erklärung, Video oder Übung parat.
  • 24/7 auf Learnattack.de und WhatsApp mit Bildupload und Sprachnachrichten verfügbar. Ideal, um bei den Hausaufgaben und beim Lernen von Fremdsprachen zu unterstützen.
  • Viel günstiger als andere Nachhilfe und schützt deine Daten.

Verwandte Artikel

Geschwindigkeitsverteilung von Teilchen

Gegenstand der kinetischen Gastheorie ist die Betrachtung thermodynamischer Prozesse auf der Grundlage von Teilchengrößen, wie der Teilchenanzahl, ihrer räumlichen Verteilung und ihrer Energie. Von besonderer Bedeutung ist die Geschwindigkeitsverteilung der Teilchen eines Gases, da die Geschwindigkeit eng mit der kinetischen Energie, dem Druck und auch mit der Temperatur verknüpft ist. Untersuchungen zeigen, dass zwischen der mittleren Geschwindigkeit, der wahrscheinlichsten Geschwindigkeit und der mittleren quadratischen Geschwindigkeit der Teilchen unterschieden werden muss.

Die kinetisch-statistische Betrachtungsweise

In der Thermodynamik oder Wärmelehre ist es üblich, zur Beschreibung der Zustände oder Vorgänge in einem thermodynamischen System unterschiedliche Betrachtungsweisen anzuwenden. Neben der phänomenologischen Betrachtungsweise wird die kinetisch-statistische Betrachtungsweise genutzt. Sie ist dadurch gekennzeichnet, dass zur Beschreibung von Sachverhalten und Vorgängen Teilchengrößen genutzt werden und die Beschreibung mit statistischen (stochatischen) Gesetzen erfolgt, die sichere Voraussagen über die Gesamtheit der Teilchen eines Systems ermöglichen, nicht aber über das Verhalten des einzelnen Teilchens.

Molekularbewegung und Gasdruck

Befindet sich ein Gas in einem abgeschlossenen Behälter, so übt es auf die Wände einen Druck aus. Aus kinetisch-statistischer Sicht kann man diesen Gasdruck als elastische Stöße einer Vielzahl von Teilchen deuten. Er ist umso größer, je größer die Teilchenanzahl in dem betreffenden Volumen und die mittlere Geschwindigkeit der Teilchen ist. Aus der Grundgleichung der kinetischen Gastheorie folgt:

p = 2 3 ⋅ N V ⋅ E ¯ kin = 1 3 ⋅ N V ⋅ m ⋅ v 2 ¯

Temperatur und Teilchenbewegung

Alle Stoffe bestehen aus Teilchen (Atomen, Molekülen), die sich unterschiedlich schnell bewegen. Die Heftigkeit der Teilchenbewegung hängt vom Aggregatzustand und von der Temperatur ab. Dabei gilt:
Je höher die Temperatur eines Körpers ist, desto heftiger bewegen sich die Teilchen des Stoffes, aus dem der Körper besteht. Die quantitativen Zusammenhänge erhält man durch die Verknüpfung der Grundgleichung der kinetischen Gastheorie mit der Zustandsgleichung des idealen Gases. Zwischen der Temperatur des idealen Gases und seiner kinetischen Energie bzw. Geschwindigkeit bestehen folgende Zusammenhänge:

E ¯ k i n = 3 2   k ⋅ T oder 1 2 m ⋅ v 2 ¯ = 3 2   k ⋅ T

Wissenstest, Kinetische Theorie der Wärme

In der kinetischen Theorie der Wärme erfolgt die Beschreibung des Verhaltens von Gasen mit solchen Größen wie Teilchenzahl, mittlere Geschwindigkeit und mittlere kinetische Energie. Diese Teilchengrößen sind unmittelbar mit makroskopisch messbaren Größen wie dem Druck und der Temperatur verbunden. Der Test zeigt Ihnen, ob sie Grundaussagen und Zusammenhänge dieses Gegenstandsbereichs der Physik verstanden haben.

Hier kannst du dich selbst testen. So kannst du dich gezielt auf Prüfungen und Klausuren vorbereiten oder deine Lernerfolge kontrollieren.

Multiple-Choice-Test zum Thema "Physik - Kinetische Theorie der Wärmer".

Viel Spaß beim Beantworten der Fragen!

WISSENSTEST

Ein Angebot von

Footer

  • Impressum
  • Sicherheit & Datenschutz
  • AGB
© Duden Learnattack GmbH, 2025