Direkt zum Inhalt

Pfadnavigation

  1. Startseite
  2. Physik
  3. 4 Elektrizitätslehre
  4. 4.4 Elektromagnetische Schwingungen und Wellen
  5. 4.4.1 Bauelemente im Wechselstromkreis
  6. Induktiver Widerstand

Induktiver Widerstand

In jeder Spule wird aufgrund der Selbstinduktion eine Spannung induziert, die nach dem lenzschen Gesetz der Ursache ihrer Entstehung - also dem Stromfluss durch die Spule - entgegen wirkt. Dadurch erfolgt eine Verringerung der Stromstärke. Somit besitzt jede Spule neben dem ohmschen Widerstand ihrer Wicklungen einen zusätzlichen Widerstand, der durch ihre Induktivität zustande kommt. Man nennt diesen Widerstand induktiven Widerstand.

Formelzeichen:
Einheit:

X L
1 Ohm ( 1   Ω )

 

Schule wird easy mit KI-Tutor Kim und Duden Learnattack

  • Kim hat in Deutsch, Mathe, Englisch und 6 weiteren Schulfächern immer eine von Lehrkräften geprüfte Erklärung, Video oder Übung parat.
  • 24/7 auf Learnattack.de und WhatsApp mit Bildupload und Sprachnachrichten verfügbar. Ideal, um bei den Hausaufgaben und beim Lernen von Fremdsprachen zu unterstützen.
  • Viel günstiger als andere Nachhilfe und schützt deine Daten.
Jetzt 30 Tage risikofrei testen
Your browser does not support the video tag.

In jeder Spule wird aufgrund der Selbstinduktion eine Spannung induziert, die nach dem lenzschen Gesetz der Ursache ihrer Entstehung - also dem Stromfluss durch die Spule - entgegen wirkt. Dadurch erfolgt eine Verringerung der Stromstärke. Somit besitzt jede Spule neben dem ohmschen Widerstand ihrer Wicklungen einen zusätzlichen Widerstand, der durch ihre Induktivität zustande kommt. Man nennt diesen Widerstand induktiven Widerstand.

Formelzeichen:
Einheit:
X L
1 Ohm ( 1   Ω )

Der induktive Widerstand einer Spule ist umso größer, je höher die in ihr induzierte Gegenspannung ist. Diese Gegenspannung hängt einerseits von der Induktivität der Spule, andererseits von der Schnelligkeit, mit der sich die Stromstärke in den Spulenwindungen verändert, ab. Daher kann man für den induktiven Widerstand folgende Abhängigkeiten vermuten:

1. Je größer die Induktivität einer Spule ist, desto größer ist auch ihr induktiver Widerstand:

X L ~ L

2. Die zeitliche Veränderung einer Wechselstromstärke erfolgt besonders schnell, wenn die Frequenz f des Wechselstromes hoch ist. Je höher diese Frequenz ist, desto größer ist der induktive Widerstand der Spule:

X L ~ f

Fasst man beide Proportionalitäten zusammen, ergibt sich:

X L ~ f ⋅ L

Durch eine genaue Herleitung kann man auch den Proportionalitätsfaktor ermitteln. Er beträgt 2 π .

Somit gilt für den induktiven Widerstand einer Spule insgesamt:

X L = 2 π ⋅ f ⋅ L

Während der ohmsche Widerstand eines Bauelementes auf der Umwandlung von elektrischer Energie in thermische Energie beruht, die in Form von Wärme abgegeben wird, ist der induktive Widerstand mit keiner Energieumwandlung verknüpft. Daher ist man bestrebt, dort, wo in Wechselstromkreisen der Einsatz eines Widerstandes erforderlich ist, nach Möglichkeit verlustlose induktive Widerstände zum Einsatz zu bringen. Spulen, die zu diesem Zweck verwandt werden, nennt man Drosselspulen.

Untersucht man den Verlauf von Spannung und Stromstärke an einer Spule, so stellt man fest: Spannungs- und Stromstärkekurve sind zeitlich gegeneinander verschoben. Es tritt eine Phasendifferenz auf. Die Spannung eilt der Stromstärke zeitlich voraus.

Lernhelfer (Duden Learnattack GmbH): "Induktiver Widerstand." In: Lernhelfer (Duden Learnattack GmbH). URL: http://www.lernhelfer.de/schuelerlexikon/physik/artikel/induktiver-widerstand (Abgerufen: 29. June 2025, 16:28 UTC)

Suche nach passenden Schlagwörtern

  • Berechnungstool
  • Frequenz
  • Wechselstrom
  • Drosselspulen
  • Energieumwandlung
  • Selbstinduktion
  • interaktives Experiment
  • Simulation
  • induktiver Widerstand
  • Animation
  • Gegenspannung
Jetzt durchstarten

Lernblockade und Hausaufgabenstress?

Entspannt durch die Schule mit KI-Tutor Kim und Duden Learnattack.

  • Kim hat in Deutsch, Mathe, Englisch und 6 weiteren Schulfächern immer eine von Lehrkräften geprüfte Erklärung, Video oder Übung parat.
  • 24/7 auf Learnattack.de und WhatsApp mit Bildupload und Sprachnachrichten verfügbar. Ideal, um bei den Hausaufgaben und beim Lernen von Fremdsprachen zu unterstützen.
  • Viel günstiger als andere Nachhilfe und schützt deine Daten.

Verwandte Artikel

Anwendungen zur elektromagnetischen Induktion

Die elektromagnetische Induktion wird in vielfältiger Weise genutzt. Die Wirkungsweise von Generatoren zur Erzeugung von Elektroenergie und von Transformatoren zur Umformung dieser Energie basieren auf dem Induktionsgesetz. Weitere Beispiele für die Anwendung der elektromagnetischen Induktion sind Induktionsspulen zur Schaltung von Ampeln, Metalldetektoren, Induktionsherde und das Induktionshärten, Fehlerstromschutzschalter oder dynamische Mikrofone. Ausgewählte Beispiele werden in diesem Beitrag erläutert.

Generatoren

Generatoren dienen der Umwandlung von mechanischer Energie in elektrische Energie. Dabei wird das Induktionsgesetz genutzt. Fast alle Generatoren arbeiten nach dem Rotationsprinzip: Durch ein rotierendes Magnetfeld werden in fest stehenden Induktionsspulen Spannungen induziert (Innenpolmaschine) oder in rotierenden Induktionsspulen werden durch ein fest stehendes Magnetfeld Spannungen induziert (Außenpolmaschine).
Für die Elektroenergieversorgung nutzt man zumeist sinusförmigen Wechselstrom, dessen Entstehung für den elementaren Fall der gleichförmigen Rotation einer Leiterschleife in einem homogenen Magnetfeld leicht aus dem Induktionsgesetz ableitbar ist.

Grundversuche zur elektromagnetischen Induktion

Die elektromagnetische Induktion ist ein Vorgang, bei dem durch Bewegung eines elektrischen Leiters im Magnetfeld oder durch Änderung des von einem Leiter umschlossenen Magnetfeldes eine elektrische Spannung und ein Stromfluss erzeugt werden. Umfassend wird dieser Vorgang durch das Induktionsgesetz erfasst. Aus historischer Sicht wesentlich sind eine Reihe von Versuchen, die man als Grundversuche zur elektromagnetischen Induktion bezeichnet und mit denen gezeigt werden kann, unter welchen Bedingungen überhaupt eine Induktionsspannung entsteht und durch welche Faktoren der Betrag der Induktionsspannung beeinflusst wird. In dem Beitrag sind die wichtigsten Grundversuche zusammengestellt und erläutert. Sie waren letztlich die empirische Grundlage für die Formulierung des Induktionsgesetzes, das MICHAEL FARADAY 1831 fand.

Entdeckung der elektromagnetischen Induktion

Ausgangspunkt für die Entdeckung der Induktion waren Vorstellungen von der Einheit der Naturkräfte und vermutete Zusammenhänge zwischen Elektrizität und Magnetismus.
1820 bemerkte OERSTED in einem Versuch, dass eine Magnetnadel in der Nähe eines elektrischen Leiters abgelenkt wird, wenn man den Strom einschaltet. Andere Wissenschaftler, wie AMPÈRE und FARADAY, bauten die Versuche von OERSTED nach und entwickelten sie weiter. Dabei fand FARADAY 1831 die elektromagnetische Induktion.
Innerhalb von drei Monaten entwickelte er alle Grundversuche der Induktion und eine Urform eines elektrischen Generators.

Lenzsches Gesetz

HEINRICH FRIEDRICH EMIL LENZ (1804-1865) entdeckte 1833 bei seinen Untersuchungen zum elektrischen Strom und zu der von MICHAEL FARADAY (1791-1867) erforschten elektromagnetischen Induktion, dass die Richtung des Induktionsstromes nicht zufällig ist. Sie steht vielmehr in ursächlichem Zusammenhang mit der jeweiligen Ursache für das Entstehen einer Induktionsspannung. Es gilt:

Der Induktionsstrom ist stets so gerichtet, dass er der Ursache seiner Entstehung entgegenwirkt.

Dieses Gesetz, das nichts anderes ist als der Energieerhaltungssatz für die elektromagnetische Induktion ist, wird nach seinem Entdecker als lenzsches Gesetz oder lenzsche Regel bezeichnet.

Ein Angebot von

Footer

  • Impressum
  • Sicherheit & Datenschutz
  • AGB
© Duden Learnattack GmbH, 2025