Direkt zum Inhalt

Pfadnavigation

  1. Startseite
  2. Physik
  3. 3 Wärmelehre
  4. 3.5 Hauptsätze der Wärmelehre und Wärmekraftmaschinen
  5. 3.5.2 Wärmekraftmaschinen
  6. Wärmepumpe

Wärmepumpe

Wärmepumpen werden vor allem für die Heizung von Räumen und Gebäuden sowie für die Warmwassergewinnung genutzt. Dabei wird Erdwärme, die Wärme des Grundwassers oder die Wärme der Luft außerhalb des Gebäudes bei niedriger Temperatur aufgenommen und im Inneren des Gebäudes bei höherer Temperatur abgegeben. Dazu muss elektrische Energie zum Antrieb der Wärmepumpe zugeführt werden.
Das Grundprinzip einer Wärmepumpe wurde bereits um 1852 von dem englischen Physiker WILLIAM THOMSON (Lord KELVIN) gefunden. Intensiver genutzt werden Wärmepumpen aber erst seit etwa 1990.

Schule wird easy mit KI-Tutor Kim und Duden Learnattack

  • Kim hat in Deutsch, Mathe, Englisch und 6 weiteren Schulfächern immer eine von Lehrkräften geprüfte Erklärung, Video oder Übung parat.
  • 24/7 auf Learnattack.de und WhatsApp mit Bildupload und Sprachnachrichten verfügbar. Ideal, um bei den Hausaufgaben und beim Lernen von Fremdsprachen zu unterstützen.
  • Viel günstiger als andere Nachhilfe und schützt deine Daten.
Jetzt 30 Tage risikofrei testen
Your browser does not support the video tag.

Wärmepumpen werden vor allem für die Heizung von Räumen und Gebäuden sowie für die Warmwassergewinnung genutzt. Dabei wird Erdwärme, die Wärme des Grundwassers oder die Wärme der Luft außerhalb des Gebäudes bei niedriger Temperatur aufgenommen und im Inneren des Gebäudes bei höherer Temperatur abgegeben. Dazu muss elektrische Energie zum Antrieb der Wärmepumpe zugeführt werden.
Das Grundprinzip einer Wärmepumpe wurde bereits um 1852 von dem englischen Physiker WILLIAM THOMSON (1824-1907), der später zum Lord KELVIN ernannt wurde, gefunden. Es wird auch beim Kühlschrank angewendet. Intensiver genutzt werden Wärmepumpen aber erst seit etwa 1990. Sie sind in den letzten Jahren technisch erheblich weiterentwickelt worden.

Aufbau und Wirkungsweise einer Wärmepumpe

Nachfolgend sind der Aufbau und die Wirkungsweise einer Kompressionswärmepumpe dargestellt. Das ist die am häufigsten verwendete Art von Wärmepumpen. Daneben gibt es noch Absorptionswärmepumpen.
Die wichtigsten Bestandteile einer Kompressionswärmepumpe,
nachfolgend kurz Wärmepumpe genannt, sind ein System von
Rohrleitungen mit einem Arbeitsmittel, ein Verdichter (Kompressor), ein Verdampfer, ein Verflüssiger und ein Ventil (Expansionsventil, Drossel). Die Anordnung der Teile ist in Bild 2 dargestellt.

  • Aufbau einer Wärmepumpe

Der Verdampfer befindet sich außerhalb des Gebäudes, z. B. im Erdreich, im Grundwasser oder in der Luft (Bild 3). Die übrigen Teile befinden sich im Gebäude. Das Arbeitsmittel in den Rohrleitungen ist eine spezielle Flüssigkeit mit einer Siedetemperatur von -25 °C
bis -45 °C. Unter anderem wird auch Propan mit einer Siedetemperatur von -42,1 °C verwendet.

Im Verdampfer geht das Arbeitsmittel vom flüssigen in den gasförmigen Aggregatzustand über. Dazu ist Wärme (Verdampfungswärme) erforderlich, die der Umgebung (Erde, Wasser, Luft) entzogen wird.
Durch eine Rohrleitung gelangt das gasförmige Arbeitsmittel in den Verdichter. Das ist eine Pumpe, durch die das Gas komprimiert, also der Druck in ihm erhöht wird. Das Gas unter hohem Druck gelangt in den Verflüssiger.

Durch das Komprimieren des Gases erhöht sich seine Siedetemperatur. Es wird flüssig und gibt dabei Wärme (Kondensationswärme) ab. Diese Kondensationswärme wird genutzt, um Wasser in einem Heizkreislauf zu erwärmen, das dann z. B. zur Raumheizung verwendet wird.

Das unter hohem Druck stehende flüssige Arbeitsmittel gelangt nach der Wärmeabgabe zu einem Ventil, durch das der Druck erheblich verringert wird. Aufgrund des geringeren Drucks sinkt die Siedetemperatur wieder. Das Arbeitsmittel wird flüssig und gelangt dann wieder in den Verdampfer. Der Kreislauf beginnt von Neuem.

  • Zum Verdampfen wird die Umgebungswärme genutzt.

    G. Lattke, Berlin

Energiebilanz bei Wärmepumpen

Die Energiebilanz für eine Wärmepumpe zeigt Bild 4. Aus der Abbildung ist erkennbar: Die für den Antrieb des Verdichters erforderliche elektrische Energie ist wesentlich kleiner als die für Heizzwecke nutzbare Energie. Der Wirkungsgrad einer Wärmepumpe ist, bezogen auf diese Energien, größer als 1. Er liegt meist bei Werten zwischen 2,4 und 4,0. Dieser Wert wird bei Wärmepumpen als Leistungszahl bezeichnet.

Für die Nutzung von Wärmepumpen ist zu beachten, dass ihr Wirkungsgrad umso größer ist, je kleiner die Temperaturdifferenz zwischen der außen aufgenommenen und der innen abgegebenen Wärme ist. Er kann berechnet werden mit der Gleichung:

η = T ab T ab − T auf

Wärmepumpen sind deshalb besonders für Fußbodenheizungen geeignet, da in diesem Falle der Wirkungsgrad besonders groß ist.

Vorteile und Nachteile von Wärmepumpen

Die Vorteile von Wärmepumpen bestehen vor allem darin, dass

  • nicht erneuerbare Energieträger eingespart werden,
  • keine Emissionen von Kohlenstoffdioxid auftreten,
  • regenerative Wärmequellen (Erdwärme, Wärme der Luft) genutzt werden.

Die Nachteile von Wärmepumpen bestehen gegenwärtig vor allem darin, dass

  • ihre Herstellung und ihre Installation hohe Kosten verursachen,
  • der Einsatz von FCKW-freien und chlorfreien (klimawirksamen) Arbeitsmitteln noch nicht befriedigend geklärt ist,
  • beim Betrieb eine belästigende Geräuschentwicklung auftreten kann.
  • Energiebilanz bei einer Wärmepumpe
Lernhelfer (Duden Learnattack GmbH): "Wärmepumpe." In: Lernhelfer (Duden Learnattack GmbH). URL: http://www.lernhelfer.de/schuelerlexikon/physik/artikel/waermepumpe (Abgerufen: 19. May 2025, 16:47 UTC)

Suche nach passenden Schlagwörtern

  • Video
  • Lord Kelvin
  • Kompressionswärmepumpe
  • Ventil
  • Verdampfer
  • Arbeitsmittel
  • Kondensationswärme
  • Wärmepumpe
  • Verdichter
  • Nachteile von Wärmepumpen
  • Absorptionswärmepumpe
  • Verdampfungswärme
  • William Thomson
  • Kühlschrank
  • Leistungszahl
  • Wirkungsgrad
  • Vorteile von Wärmepumpen
  • Verflüssiger
Jetzt durchstarten

Lernblockade und Hausaufgabenstress?

Entspannt durch die Schule mit KI-Tutor Kim und Duden Learnattack.

  • Kim hat in Deutsch, Mathe, Englisch und 6 weiteren Schulfächern immer eine von Lehrkräften geprüfte Erklärung, Video oder Übung parat.
  • 24/7 auf Learnattack.de und WhatsApp mit Bildupload und Sprachnachrichten verfügbar. Ideal, um bei den Hausaufgaben und beim Lernen von Fremdsprachen zu unterstützen.
  • Viel günstiger als andere Nachhilfe und schützt deine Daten.

Verwandte Artikel

Gabriel Daniel Fahrenheit

* 24.05.1686 Danzig
† 16.09.1736 Den Haag

Er war ein deutscher Physiker und Instrumentenbauer, lebte aber viele Jahre in England und Holland als Hersteller meteorologischer Instrumente, verbesserte viele Geräte und führte die nach ihm benannte Thermometerskala ein.

BOSE-EINSTEIN-Kondensat - der 5. Aggregatzustand

Die BOSE-EINSTEIN-Kondensation, benannt nach dem indischen Physiker SATYENDRA NATH BOSE (1894-1974) und dem deutschen Physiker ALBERT EINSTEIN (1879-1955), ist ein quantenstatistisches Phänomen. Kühlt man z.B. Rubidiumatome auf sehr niedrige Temperaturen ab, dann kommt es zu einem rein quantenmechanischen Phasenübergang, bei dem Wechselwirkungen keine Rolle mehr spielen und alle Atome dieselben physikalischen Eigenschaften haben – sie geben gleichsam ihre Identität auf und verhalten sich alle wie ein einziges Superatom. Die Existenz eines solchen Zustandes wurde erstmals 1925 von ALBERT EINSTEIN vorhergesagt. Der experimentelle Nachweis gelang zum ersten Mal 1995.

René Antoine Reaumur

* 28.02.1683 La Rochelle
† 18.10.1757 Schloss Bermondière

Er war ein vielseitiger französischer Naturforscher, der sich vor allem mit physikalischen und biologischen Problemen beschäftigte. Bekannt wurde er durch die von ihm geschaffene Temperaturskala, die Reaumur-Skala. Darüber hinaus war er Herausgeber einer Enzyklopädie und führte zahlreiche tier- und pflanzenphysiologische Arbeiten durch.

Gottlieb Daimler

* 17.03.1834 Schorndorf
† 06.03.1900 Bad Cannstatt

Er war ein deutscher Techniker, der wesentliche Beiträge zur Entwicklung von Verbrennungsmotoren geleistet hat und zeitweise mit NIKOLAUS AUGUST OTTO zusammenarbeitete. Zusammen mit WILHELM MAYBACH entwickelte er den ersten schnell laufenden Verbrennungsmotor, der auch für den Antrieb von Fahrzeugen geeignet war.

Phasenumwandlungen

Unter einer Phasenumwandlung versteht man den Übergang eines Stoffes von einem Zustand in einen anderen. Dabei ist zwischen verschiedenen Arten zu unterscheiden. Phasenumwandlungen 1. Art sind dadurch gekennzeichnet, dass bei den Umwandlungen Wärme erforderlich ist oder frei wird. Zu dieser Art der Phasenumwandlungen gehören alle Aggregatzustandsänderungen. Daneben gibt es auch Phasenumwandlungen 2. Art, bei denen keine Umwandlungswärmen auftreten. Zu solchen Phasenumwandlungen gehört z.B. der Übergang eines Stoffes aus dem normalleitenden in den supraleitenden Zustand.

Ein Angebot von

Footer

  • Impressum
  • Sicherheit & Datenschutz
  • AGB
© Duden Learnattack GmbH, 2025