Punkte bezeichnet man als kollinear, wenn sie auf ein und derselben Geraden liegen. Zwei (verschiedene) Punkte sind stets kollinear, da sie eindeutig eine Gerade bestimmen.Vektoren, deren Repräsentanten auf einer Geraden bzw.
Es seien a 1 → , a 2 → , ..., a n → Vektoren eines Vektorraumes V (mit o → als dem Nullvektor).Die Vektoren a 1 → , a 2 → , ..., a n → heißen genau dann linear unabhängig, wenn die Gleichung λ 1 a...
Für das Vektorprodukt gelten das Alternativgesetz und das Distributivgesetz.Das Assoziativgesetz dagegen trifft im Allgemeinen nicht zu.Geometrische Anwendungen sind neben der Berechnung des Flächeninhalts (von Parallelogrammen) das Bestimmen des Schnittwinkels zweier Ebenen, das Ermitteln des...