Direkt zum Inhalt

Pfadnavigation

  1. Startseite
  2. Biologie Abitur
  3. 5 Genetik
  4. 5.3 Gentechnik
  5. 5.3.5 Gentherapie soll helfen, Erbkrankheiten zu heilen
  6. Gentherapie

Gentherapie

Eine neue Methode zur Behandlung genetisch bedingter Krankheiten ist die Gentherapie. Hierbei werden „gesunde“ Gene in das Erbgut der Patienten übertragen, um den Funktionsausfall defekter Gene zu kompensieren und somit die Krankheit zu heilen. Mithilfe der Gentherapie können bestimmte genetische Defekte behandelt werden. Dabei liegt ein genetischer Defekt vor, wenn bei einem Lebewesen ein Gen fehlt, defekt ist oder die beabsichtigte Funktion nicht erfüllt. Bei einer Gentherapie werden dem Körper einige Zellen entnommen. Diese Zellen erhalten das neue (therapeutische) Gen und werden danach wieder in den Körper eingebracht. Das Ziel einer Gentherapie besteht darin, in die genetische Information einer Körperzelle Erbsubstanz künstlich einzuschleusen. Für den ungezielten Transfer gibt es verschiedene Methoden (Vektoren), um ein therapeutisches Gen in eine Zelle zu transportieren. Im engeren Sinn wird dieser Ansatz auch als somatische Gentherapie bezeichnet (vom griechischen „Soma“ für Körper). Das veränderte Erbmaterial bleibt dabei auf das Gewebe oder den Körper des behandelten Menschen beschränkt, im Gegensatz zu einer in Deutschland als sogenannte „Keimbahntherapie“ nicht erlaubten Veränderung an Ei- oder Samenzellen, die weitervererbt werden könnte.

Schule wird easy mit KI-Tutor Kim und Duden Learnattack

  • Kim hat in Deutsch, Mathe, Englisch und 6 weiteren Schulfächern immer eine von Lehrkräften geprüfte Erklärung, Video oder Übung parat.
  • 24/7 auf Learnattack.de und WhatsApp mit Bildupload und Sprachnachrichten verfügbar. Ideal, um bei den Hausaufgaben und beim Lernen von Fremdsprachen zu unterstützen.
  • Viel günstiger als andere Nachhilfe und schützt deine Daten.
Jetzt 30 Tage risikofrei testen
Your browser does not support the video tag.

Bei der somatischen Gentherapie gelangen die intakten Erbanlagen nur in Körperzellen. Die neuen Erbanlagen könnten allerdings auch in Keimzellen eingefügt werden. Diese sogenannte Keimbahntherapie ist in Deutschland unter ethischen Aspekten und aus Sicherheitsgründen gesetzlich verboten, weil fehlerhafte genetische Veränderungen entstehen und vererbt wedren können. Die Gentherapie befindet sich noch in den Anfängen ihrer Entwicklung. Zahlreiche methodische Probleme müssen noch überwunden werden. Aus noch nicht verstandenen Gründen bleiben beispielsweise übertragene Gene „still“ oder werden im Genom nach einiger Zeit inaktiviert, sodass die Therapie wiederholt werden muss.

Für die weitere Erforschung der Gentherapie eignet sich die Leber als Organ gut (Bild 1). Von ihr lassen sich problemlos Zellen isolieren, in Nährlösungen kultivieren und in den Körper zurückübertragen. Außerdem werden besonders viele Stoffwechselerkrankungen durch Fehlfunktionen dieses Organs verursacht.
Die familiäre Hypercholesterinämie ist eine dieser Krankheiten. Sie beruht auf dem Mangel bzw. dem Fehlen von Rezeptoren auf Leberzellen, die an der Aufnahme bestimmter Cholesterine beteiligt sind. Dadurch haben die Patienten einen extrem hohen Cholesterinspiegel, was schon vor dem zwanzigsten Lebensjahr zu Arteriosklerose und Herzinfarkt führen kann. Bei dieser Therapie werden außerhalb des Organismus mithilfe von Viren die „gesunden“ Gene in Leberzellen eingefügt. Die transgenen Zellen siedeln sich nach erfolgter Infusion in der Leber an und synthetisieren den Rezeptor. Der Cholesterinspiegel sinkt. In ersten Versuchen dazu sank der Spiegel allerdings nur gering und die übertragenen Gene verloren nach einiger Zeit ihre Aktivität. Die Therapiestrategie scheint dennoch im Prinzip richtig.
Für eine Gentherapie geeignete Krankheiten sind z. B. Erbkrankheiten wie Mukoviszidose, Hämophilie, Phenylketonurie und nichterbliche Krankheiten wie Alzheimer-Krankheit, Parkinson-Krankheit, rheumatische Erkrankungen und AIDS. Die Gentherapie bei Mukoviszidose kann direkt in der Lunge durchgeführt werden.

Neben der Gentherapie gewinnt die Gendiagnostik immer mehr an Bedeutung.

  • Gentherapie an der Leber: Außerhalb des Körpers wird der genetisch bedingte Defekt behoben und die „gesundeten“ Zellen werden zurückinjiziert.

    Renate Diener

Lernhelfer (Duden Learnattack GmbH): "Gentherapie." In: Lernhelfer (Duden Learnattack GmbH). URL: http://www.lernhelfer.de/index.php/schuelerlexikon/biologie-abitur/artikel/gentherapie (Abgerufen: 13. June 2025, 19:16 UTC)

Suche nach passenden Schlagwörtern

  • Gentherapie
  • Gendiagnostik
  • Keimbahntherapie
  • Krankheiten
  • Genetik
  • Lunge
  • Mukoviszidose
Jetzt durchstarten

Lernblockade und Hausaufgabenstress?

Entspannt durch die Schule mit KI-Tutor Kim und Duden Learnattack.

  • Kim hat in Deutsch, Mathe, Englisch und 6 weiteren Schulfächern immer eine von Lehrkräften geprüfte Erklärung, Video oder Übung parat.
  • 24/7 auf Learnattack.de und WhatsApp mit Bildupload und Sprachnachrichten verfügbar. Ideal, um bei den Hausaufgaben und beim Lernen von Fremdsprachen zu unterstützen.
  • Viel günstiger als andere Nachhilfe und schützt deine Daten.

Verwandte Artikel

Natur- und Umweltschutzorganisationen

Die aktuellen Probleme des Natur- und Umweltschutzes sind allein von staatlichen Stellen nicht zu bewältigen. Wirksamer Natur- und Umweltschutz ist daher ohne die nichtstaatlichen Natur- und Umweltschutzorganisationen nicht mehr denkbar. Sie machen Missstände im Umweltschutz öffentlich und mit unterschiedlichen Mitteln wird Druck auf die Verantwortlichen ausgeübt. Ihre Mitarbeit wird national und international als hilfreich und notwendig beurteilt.

Gentechnologie

Es gibt seit der Diskussion über Atomenergie kein anderes Thema, welches Nationen so sehr spaltet wie die Gentechnologie. Laut Umfragen lehnen 75 % der Bevölkerung in Deutschland Gentechnologie in der Nahrung und auf dem Acker ab. Dagegen befürwortet etwa der gleiche Anteil den Einsatz von Gentechnologie in der Medizin.

Monoklonale Antikörper

Gewöhnlich wirken vielfältige Strukturen auf der Oberfläche von Viren, Bakterien und anderen Erregern als Epitope (sie reagieren jeweils mit einem spezifischen Antikörper), sodass im Organismus als Abwehrreaktion meist ein Gemisch aus verschiedenen Antikörpern gebildet wird. Es werden also unterschiedliche B-Lymphozyten zur Klonbildung und damit Vermehrung aktiviert.
Monoklonale Antikörper sind im Gegensatz zu herkömmlichen Seren hochspezifisch und nur gegen eine einzige antigene Determinante des verwendeten Erregers gerichtet. Sie entstehen sozusagen aus einer B-Zelle. Die Produktion monoklonaler Antikörper erfolgt mit der sogenannten Hybridomtechnik. Dabei erfolgt eine Zellverschmelzung zwischen dem Antikörper produzierenden Lymphozyten und langlebigen teilungsaktiven Tumorzellen. Die entstehenden Hybridzellen zeichnen sich sowohl durch die Antikörperbildung als auch durch eine unbegrenzte Teilungsfähigkeit aus.
Der Einsatz menschlicher monoklonaler Antikörper in der Therapie von akuten Infektionskrankheiten, für die noch keine wirksamen Antibiotika oder Chemotherapeutika existieren (z. B. Malaria), könnte die Pharmakologie revolutionieren. Perspektivisch wird der Einsatz monoklonaler Antikörper auch die Tumordiagnostik bereichern, um über veränderte spezifische Oberflächenmarker diese entarteten Zellen nachzuweisen.

Thomas Hunt Morgan

* 25.09.1866 in Lexington (Kentucky)
† 04.12.1945 in Pasadena (Kalifornien)

Der US-amerikanische Biologe THOMAS HUNT MORGAN gilt als „Vater der Genforschung“. Seit 1907 experimentierten er und seine Mitarbeiter an der New Yorker Columbia University mit Züchtungen der Frucht- oder Taufliege Drosophila melanogaster. Zunächst, um die wiederentdeckten Aussagen GREGOR MENDELs (1822-1884) kritisch zu überprüfen. Im Mai 1910 machte MORGAN in seinem „Fliegenzimmer“ einen ungewöhnlichen Fund: in einem der Versuchsgläser schwirrte eine männliche Mutante mit weißen statt üblicherweise roten Augen. Diese Merkmalsausprägung übertrug sich auch auf ihre männlichen Nachkommen. MORGAN gelang es, das entsprechende Gen auf dem X-Chromosom der Fliege zu lokalisieren. Der erste Schritt zur modernen Genetik war getan.

Kary Banks Mullis

* 28.12.1944 in Lenoir, North Carolina (USA)

KARY BANKS MULLIS arbeitete von 1979 bis 1986 als DNA-Chemiker bei der Cetus Corporation in Emeryville, Kalifornien und entwickelte dort die Methode der Polymerase-Kettenreaktion, mit deren Hilfe man in kurzer Zeit aus kleinsten DNA-Mengen Millionen von Kopien herstellen kann. Dafür erhielt er 1993 den Nobelpreis für Chemie. Mittlerweile wird die PCR-Methode in den unterschiedlichsten Bereichen der modernen biologischen Forschung angewandt, von der Paläobiologie über die Evolutionsforschung bis zur forensischen Biologie (genetischer Fingerabdruck). MULLIS hat einige weitere bahnbrechende Patente erfunden. Er erhielt zahlreiche nationale und internationale Preise. Derzeit forscht er am Children´s Hospital and Research Institute in Oakland, Kalifornien. Außerdem ist er wissenschaftlicher Berater verschiedener Gentechnikunternehmen und Gastdozent mehrerer Hochschulen.

Ein Angebot von

Footer

  • Impressum
  • Sicherheit & Datenschutz
  • AGB
© Duden Learnattack GmbH, 2025