Direkt zum Inhalt

Pfadnavigation

  1. Startseite
  2. Biologie Abitur
  3. 3 Stoffwechsel und Energieumsatz
  4. 3.1 Energieumsatz bei Stoffwechselvorgängen
  5. 3.1.2 Organismen leben von freier Energie
  6. Organismen leben von freier Energie

Organismen leben von freier Energie

Eine Zelle stellt ein energetisch offenes System dar. Ständig tauscht sie mit ihrer Umgebung Stoffe und Energie aus. Diesem Austausch liegen entsprechende physikalische Gesetzmäßigkeiten zugrunde. So erklären der 1. und 2. Hauptsatz der Thermodynamik die energetischen Verhältnisse in biologischen Systemen. Die Gesetze des Fließgleichgewichts gelten für alle biologischen Systeme und leiten sich aus der Nichtgleichgewichts-Thermodynamik her.

Schule wird easy mit KI-Tutor Kim und Duden Learnattack

  • Kim hat in Deutsch, Mathe, Englisch und 6 weiteren Schulfächern immer eine von Lehrkräften geprüfte Erklärung, Video oder Übung parat.
  • 24/7 auf Learnattack.de und WhatsApp mit Bildupload und Sprachnachrichten verfügbar. Ideal, um bei den Hausaufgaben und beim Lernen von Fremdsprachen zu unterstützen.
  • Viel günstiger als andere Nachhilfe und schützt deine Daten.
Jetzt 30 Tage risikofrei testen
Your browser does not support the video tag.

Thermodynamisches Gleichgewicht und freie Energie

Liegt eine chemische Reaktion vom Typ A + B ↔ C + ‌ D vor, stellt sich nach einer gewissen Zeit ein Gleichgewicht zwischen den Ausgangsstoffen A und B und den Endprodukten C und D ein. Seine Lage wird durch die thermodynamische Gleichgewichtskonstante K angegeben. Danach ist

K = c(C) x c(D) : c(A) x c(B),

wobei c(A) ... c(D) die Konzentrationen der Stoffe in Mol pro Liter darstellen, die sich im Gleichgewicht eingestellt haben. Je weiter die tatsächlichen Konzentrationen der Stoffe von den Gleichgewichtskonzentrationen entfernt sind, desto „energiereicher“ ist das System, d. h. desto mehr Energie wird bei der Reaktion zum chemischen Gleichgewicht hin freigesetzt.

Diese nutzbare freie Energie wird „freie Enthalpie“ Δ G genannt. Im Allgemeinen wird sie bei physiologischen Reaktionen für eine Temperatur von 25 °C, für einen Druck von 1 bar, einem Umsatz von 1 Mol und einem pH-Wert von 7 angegeben: G 0 ' . Die Maßeinheit ist kJ ⋅ mol -1 .

Die Änderung der freien Enthalpie ist ein Kriterium dafür, ob eine Reaktion spontan verlaufen kann:

  1. Eine Reaktion kann nur spontan ablaufen, wenn Δ G negativ ist. Die Reaktion verläuft exergonisch.
  2. Ein System befindet sich im Gleichgewicht, wenn Δ G null ist.
  3. Eine Reaktion kann nicht spontan ablaufen, wenn Δ G positiv ist. Die Zufuhr von Energie ist notwendig, um die Reaktion anzutreiben. Die Reaktion verläuft endergonisch.

Fließgleichgewicht

Im Bild 1 wird das Fließgleichgewicht als hydraulisches Modell dargestellt: Es stellt sich z. B. beim abbauenden Stoffwechsel eines Organismus ein, bei dem ständig energiereiche Ausgangsstoffe (grau) zugeführt und energiearme Endprodukte (rot) abgeführt werden.
Durch ständigen Stoffaustausch mit der Umwelt wird verhindert, dass sich ein chemisches Gleichgewicht der einzelnen Reaktionen einstellt. Die Gleichgewichte der verschiedenen Teilreaktionen werden angestrebt, aber nie erreicht. Dadurch ist das Reaktionssystem zu dauernder Arbeitsleistung fähig. Das von der lebenden Zelle aufrechterhaltene Ungleichgewicht wird als Fließgleichgewicht bezeichnet. Eine lebende Zelle stellt damit ein energetisch offenes System dar. Sie steht mit ihrer Umwelt in einem ständigen Austausch von Stoffen und Energie. Theoretische Grundlage solcher Vorgänge ist nicht die klassische Thermodynamik, sondern die Nichtgleichgewichts-Thermodynamik. Aus ihr lässt sich ableiten, dass Leben nur fern vom thermodynamischen Gleichgewicht existieren kann. Trotz des Ungleichgewichtes liegen die verschiedenen Stoffe in annähernd konstanten Konzentrationen vor.

Prinzipiell gelten die Gesetzmäßigkeiten des Fließgleichgewichtes für alle biologischen Systeme auf allen Organisationsebenen:

  1. auf molekularer Ebene bei biochemischen Reaktionsketten der Stoffwechselwege,
  2. auf der Ebene der Organismen bei Stoffaustausch zwischen einzelnen Organen oder zwischen Organismus und Umwelt,
  3. auf der Ebene von Ökosystemen zwischen den Organismen.
  • Modell eines Fließgleichgewichts

Die Abbildung stellt modellhaft eine einzelne Reaktion dar, z. B. A → B Energie wird freigesetzt, solange das Ungleichgewicht besteht, brennt die Lampe. Ist das Gleichgewicht erreicht, wird keine Energie mehr freigesetzt, die Lampe erlischt.

Freie Enthalpie leistet Zellarbeit

  1. Mechanische Arbeit, z. B. Kontraktion von Muskelzellen.
  2. Transportarbeit, z. B. Transport von Molekülen durch Membranen entgegen dem Konzentrationsgefälle.
  3. Chemische Arbeit, z. B. Bildung von Makromolekülen aus Monomeren.

Bei der Zellatmung wird so lange Energie freigesetzt, so lange der Zelle Glucose und Sauerstoff zugeführt und Kohlenstoffdioxid und Wasser abgeführt werden. Um die Energie länger zur Verfügung zu haben, wird sie sofort als chemische Energie gebunden, meist als ATP.

Lernhelfer (Duden Learnattack GmbH): "Organismen leben von freier Energie." In: Lernhelfer (Duden Learnattack GmbH). URL: http://www.lernhelfer.de/index.php/schuelerlexikon/biologie-abitur/artikel/organismen-leben-von-freier-energie (Abgerufen: 10. July 2025, 02:54 UTC)

Suche nach passenden Schlagwörtern

  • Thermodynamik
  • thermodynamisches Gleichgewicht
  • Hauptsatz der Thermodynamik
  • Zellatmung
  • Fließgleichgewicht
  • Gesetzmäßigkeiten
  • Energie
  • Gleichgewichtskonstante
  • Freie Enthalpie
Jetzt durchstarten

Lernblockade und Hausaufgabenstress?

Entspannt durch die Schule mit KI-Tutor Kim und Duden Learnattack.

  • Kim hat in Deutsch, Mathe, Englisch und 6 weiteren Schulfächern immer eine von Lehrkräften geprüfte Erklärung, Video oder Übung parat.
  • 24/7 auf Learnattack.de und WhatsApp mit Bildupload und Sprachnachrichten verfügbar. Ideal, um bei den Hausaufgaben und beim Lernen von Fremdsprachen zu unterstützen.
  • Viel günstiger als andere Nachhilfe und schützt deine Daten.

Verwandte Artikel

Genexpression bei Hefepilzen (Experimentalanleitung)

Der Begriff Genexpression umfasst ganz allgemein die Realisierung der genetischen Information der DNA durch die Umwandlung und Herstellung funktioneller Proteine, d. h. genauer formuliert die im Verlauf der Transkription stattfindende Bildung von tRNA, rRNA und mRNA sowie die darauf aufbauende Translation reifer mRNA-Sequenzen zu Proteinen. Ein wesentlicher Teil dieses Prozesses ist die Proteinbiosynthese, die als Endergebnis die lebensnotwendigen Proteine bereitstellt. Die vollständige Ausprägung der genetischen Information führt zur Entwicklung des speziellen Phänotyps eines Organismus. Die Ausbildung eines Merkmals wird meist durch mehrere miteinander in Wechselwirkung stehende Gene kontrolliert und hängt darüber hinaus zum Teil auch von Umwelteinflüssen ab. Die nachfolgend beschriebenen Experimente dienen dem Nachweis einer speziell ausgeprägten Nahrungsbevorzugung bei Hefepilzen.

Atmungskette

Die Atmungskette ist der letzte Schritt des in den Mitochondrien stattfindenden Glucoseabbaus und schließt sich an Glykolyse und Citratzyklus an. Die während des Citratzyklus entstandenen Coenzyme NADH und FADH 2 übertragen ihren Wasserstoff an Sauerstoff und bilden somit Wasser – eine Knallgasreaktion mitten in der Zelle - würde diese Reaktion nicht auf viele harmlose Schritte aufgespalten ablaufen – die Atmungskette. Als Endprodukt entsteht ATP, welches dem Organismus als Energie zur Verfügung steht.
Die Enzyme der Atmungskette sind bei Prokaryoten in der Cytoplasmamembran, bei Eukaryoten in der inneren Mitochondrienmembran lokalisiert. Sie bilden eine Reihe/Kette von Redoxsystemen, durch die Elektronen stufenweise in Richtung positiveres Potenzial transportiert werden. Integrale Membranproteine pumpen an drei Stellen der Reaktionskette Protonen durch die Membran, da diese nicht ohne Weiteres die Biomembranen passieren können. Es gibt drei verschiedene Transportarten für Elektronen in der Atmungskette: die ausschließliche Elektronenübertragung ( Fe 3+ zu Fe 2+ ), die Übertragung eines Wasserstoffatoms ( H +   +   e - ) oder die Übertragung eines Hydridions ( H - ).

Jacobus Hendricus van't Hoff

* 30.08.1852 in Rotterdam
† 01.03.1911 in Berlin

J. H. VAN’T HOFF war ein niederländischer Physiker und Chemiker. Er lehrte als Professor für Chemie, Mineralogie und Geologie in Amsterdam. VAN’T HOFF war einer der Mitbegründer der physikalischen Chemie. Er begründete die Stereochemie. Am bekanntesten wurde er jedoch durch die Beschreibungen chemischer Gleichgewichte und die Entwicklung des Massenwirkungsgesetzes. Die bekannte RGT- Regel (Reaktionsgeschwindigkeits-Temperatur-Regel) stammt von ihm. Für die Entdeckung der Gesetze der Reaktionskinetik sowie des osmotischen. Drucks in Lösungen erhielt VAN’T HOFF 1901 den Nobelpreis für Chemie. Er war damit der Erste, der den Nobelpreis für Chemie bekam.

ATP – Energieüberträger in Zellen oder in Lebewesen

Energie kann viele Zustandsformen haben: Lichtenergie, Wärmeenergie, elektrische Energie oder chemische Energie. Lebende Organismen benötigen zum Aufrechterhalt ihrer Lebensfunktionen chemische Energie. Diese wird durch bestimmte chemische Eigenschaften gespeichert und kann bei Bedarf abgerufen werden, um in Arbeit umgewandelt zu werden. Der wichtigste chemische Energiespeicher der Lebewesen ist ATP (Adenosintriphosphat).

Ermittlung des Leistungsumsatzes durch indirekte Kalorimetrie

Kalorimetrie (Kalorie, lat. calor = Wärme und Metrie, griech. metran = messen) bedeutet übersetzt soviel wie Wärmemessung.

Die Kalorimetrie ist ein Verfahren zur Bestimmung von Wärmemengen und Energieumsatz. Damit kann man z. B. den Joule-Gehalt (früher Kalorie: 1 cal = 4,1868 J) von Nahrungsmitteln, die freigesetzte Enthalpie von chemischen Reaktionen oder die frei werdende Energie bei Stoffwechselprozessen von Organismen messen. Im Gegensatz zur direkten Kalorimetrie, bei der in einer thermisch isolierten Kammer die Menge der vom Organismus oder einer chemischen Reaktion abgegebenen Wärme gemessen wird, wird bei der indirekten Kalorimetrie aus dem Verbrauch von Sauerstoff und der Produktion von Kohlenstoffdioxid die erzeugte Energie berechnet.

Ein Angebot von

Footer

  • Impressum
  • Sicherheit & Datenschutz
  • AGB
© Duden Learnattack GmbH, 2025