Direkt zum Inhalt

Pfadnavigation

  1. Startseite
  2. Mathematik Abitur
  3. 11 Analytische Geometrie der Ebene und des Raumes
  4. 11.5 Kreise und Kugeln
  5. 11.5.1 Gleichungen von Kreis und Kugel
  6. Apollonios-Kreis

Apollonios-Kreis

Der griechische Geometer APOLLONIOS VON PERGE (um 262 v.Chr. bis etwa 190 v.Chr.) beschäftigte sich intensiv mit Fragen der Form geometrischer Figuren.

Schule wird easy mit KI-Tutor Kim und Duden Learnattack

  • Kim hat in Deutsch, Mathe, Englisch und 6 weiteren Schulfächern immer eine von Lehrkräften geprüfte Erklärung, Video oder Übung parat.
  • 24/7 auf Learnattack.de und WhatsApp mit Bildupload und Sprachnachrichten verfügbar. Ideal, um bei den Hausaufgaben und beim Lernen von Fremdsprachen zu unterstützen.
  • Viel günstiger als andere Nachhilfe und schützt deine Daten.
Jetzt 30 Tage risikofrei testen
Your browser does not support the video tag.

Als speziellen geometrischen Ort untersuchte APOLLONIOS die Menge aller der Punkte P, die von einem gegebenen Punkt A doppelt so weit entfernt sind wie von einem anderen gegebenen Punkt B, d.h. für die gilt:
  A P ¯ = 2 ⋅ B P ¯
Er stellte fest, dass diese Punkte auf einem Kreis (dem sogenannten APOLLONIOS-Kreis) liegen.

  • Apollonios-Kreis

Der Nachweis, dass es sich bei der Menge der Punkte P(x; y) mit der gegebenen Eigenschaft tatsächlich um einen Kreis handelt, lässt sich mit den Mitteln der analytischen Geometrie relativ leicht führen.

O.B.d.A. nehmen wir dazu an, dass die Punkte A und B in einem ebenen kartesischen Koordinatensytem die Koordinaten (0; 0) bzw. (b; 0) haben.

Bild

Dann muss gelten:
  x 2 + y 2 = 2 ⋅ ( x − b ) 2 + y 2
Durch Quadrieren und Umformen ergibt sich daraus
  x 2 − 8 b 3 x + y 2 = − 4 3 b 2
bzw. mittels quadratischer Ergänzung
  ( x − 4 b 3 ) 2 + y 2 = 4 9 b 2 .

Diese Gleichung beschreibt einen Kreis mit dem Mittelpunkt
M   ( 4 b 3 ;   0 ) und dem Radius 2 3 b .

In der obigen Abbildung ist der Sachverhalt dagestellt, wobei als feste Punkte die Punkte A(0; 0) und B(6; 0) gewählt wurden. Der APOLLONIOS-Kreis hat in diesem Fall den Mittelpunkt M(8; 0) und den Radius 4.

Die Punkte A, B, M und der Kreispunkt C sind sogenannte harmonische Punkte, d.h. Punkte der harmonischen Teilung der Strecke A M ¯ , d.h., es gilt:
  M B ¯     :     B A ¯ = M C ¯     :     C A ¯

B ist der innere harmonische Teilpunkt, C der äußere harmonische Teilpunkt der Strecke A M ¯ .

Lernhelfer (Duden Learnattack GmbH): "Apollonios-Kreis." In: Lernhelfer (Duden Learnattack GmbH). URL: http://www.lernhelfer.de/index.php/schuelerlexikon/mathematik-abitur/artikel/apollonios-kreis (Abgerufen: 20. May 2025, 18:14 UTC)

Suche nach passenden Schlagwörtern

  • Apollonios
  • Kreisgleichung
  • harmonische Teilung
Jetzt durchstarten

Lernblockade und Hausaufgabenstress?

Entspannt durch die Schule mit KI-Tutor Kim und Duden Learnattack.

  • Kim hat in Deutsch, Mathe, Englisch und 6 weiteren Schulfächern immer eine von Lehrkräften geprüfte Erklärung, Video oder Übung parat.
  • 24/7 auf Learnattack.de und WhatsApp mit Bildupload und Sprachnachrichten verfügbar. Ideal, um bei den Hausaufgaben und beim Lernen von Fremdsprachen zu unterstützen.
  • Viel günstiger als andere Nachhilfe und schützt deine Daten.

Verwandte Artikel

Ein Angebot von

Footer

  • Impressum
  • Sicherheit & Datenschutz
  • AGB
© Duden Learnattack GmbH, 2025