Direkt zum Inhalt

Pfadnavigation

  1. Startseite
  2. Mathematik Abitur
  3. 1 Denk- und Arbeitsweisen der Mathematik
  4. 1.2 Grundbegriffe der Mathematik
  5. 1.2.1 Mengen
  6. John Venn

John Venn

* 4. August 1834 Hull, Humberside;
† 4. April 1923 Cambridge

JOHN VENN arbeitete vor allem auf dem Gebiet der mathematischen Logik. Bekannt wurde er als Schöpfer von Diagrammen zur mathematischen Logik bzw. Mengenlehre.
Mithilfe eines Systems sich überschneidender Kreise bzw. Ellipsen brachte er Beziehungen zwischen Klassen, Mengen bzw. Begriffen zum Ausdruck. Diese Darstellungen stellen eine Weiterentwicklung von Diagrammen dar, wie sie beispielweise schon bei LEONHARD EULER (eulersche Kreise) verwendet wurden.

Schule wird easy mit KI-Tutor Kim und Duden Learnattack

  • Kim hat in Deutsch, Mathe, Englisch und 6 weiteren Schulfächern immer eine von Lehrkräften geprüfte Erklärung, Video oder Übung parat.
  • 24/7 auf Learnattack.de und WhatsApp mit Bildupload und Sprachnachrichten verfügbar. Ideal, um bei den Hausaufgaben und beim Lernen von Fremdsprachen zu unterstützen.
  • Viel günstiger als andere Nachhilfe und schützt deine Daten.
Jetzt 30 Tage risikofrei testen
Your browser does not support the video tag.
Lernhelfer (Duden Learnattack GmbH): "John Venn." In: Lernhelfer (Duden Learnattack GmbH). URL: http://www.lernhelfer.de/index.php/schuelerlexikon/mathematik-abitur/artikel/john-venn (Abgerufen: 14. November 2025, 07:14 UTC)

Suche nach passenden Schlagwörtern

  • Euler
  • Venn-Diagramme
  • Logik
  • Venndiagramme
  • eulersche Kreise
Jetzt durchstarten

Lernblockade und Hausaufgabenstress?

Entspannt durch die Schule mit KI-Tutor Kim und Duden Learnattack.

  • Kim hat in Deutsch, Mathe, Englisch und 6 weiteren Schulfächern immer eine von Lehrkräften geprüfte Erklärung, Video oder Übung parat.
  • 24/7 auf Learnattack.de und WhatsApp mit Bildupload und Sprachnachrichten verfügbar. Ideal, um bei den Hausaufgaben und beim Lernen von Fremdsprachen zu unterstützen.
  • Viel günstiger als andere Nachhilfe und schützt deine Daten.

Verwandte Artikel

Der Multiplikationssatz für Ereignisse

In der Praxis steht man oftmals vor der Notwendigkeit, Wahrscheinlichkeiten für Ereignisse der Gestalt A ∩ B zu berechnen. Dies erweist sich aber nicht immer als ganz einfach. Wir betrachten dazu zwei Anwendungsbeispiele.

Totale Wahrscheinlichkeit

Mitunter wird man mit dem Problem konfrontiert, die Wahrscheinlichkeit für ein Ereignis A zu berechnen, das im Zusammenhang mit n verschiedenen Ereignissen B i auftritt (in der Praxis können die B i zum Beispiel verschiedene Fälle oder Ursachen von A sein), wobei sich die Wahrscheinlichkeiten für die Ereignisse B i und insbesondere für das Eintreten von A unter der Bedingung, dass jeweils ein B i eingetreten ist, mitunter leichter angeben bzw. ermitteln lassen.

Gesucht ist also eine Aussage über eine „unbedingte“ Wahrscheinlichkeit, wenn Informationen über bedingte Wahrscheinlichkeiten vorliegen bzw. primär bestimmbar sind. Bei einer solchen Problemsituation wird man versuchen, den im Folgenden angeführten Satz der totalen Wahrscheinlichkeit anzuwenden.

Mehrfeldertafeln

Interessieren bei der n-maligen Durchführung eines Zufallsexperiments nicht nur zwei Ereignisse und ihre jeweiligen Gegenereignisse, sondern mehrere, so versucht man, die registrierten absoluten und relativen Häufigkeiten bzw. die Wahrscheinlichkeiten der dann möglichen Ereignisse (in Verallgemeinerung der Vierfeldertafel) in Form einer Mehrfeldertafel zu protokollieren.
Als Beispiele werden Achtfeldertafeln mit zwei und drei Zerlegungen betrachtet.

Wahrscheinlichkeitsverteilungen, Ermitteln

Hier kannst du dich selbst testen. So kannst du dich gezielt auf Prüfungen und Klausuren vorbereiten oder deine Lernerfolge kontrollieren.

Multiple-Choice-Test zum Thema "Mathematik - Ermitteln von Wahrscheinlichkeitsverteilungen".

Viel Spaß beim Beantworten der Fragen!

WISSENSTEST

Der Satz von Bayes

Der nach dem englischen Geistlichen THOMAS BAYES (1702 bis 1761) benannte Satz macht Aussagen zum Berechnen bedingter Wahrscheinlichkeiten.
Der Satz von Bayes soll im Folgenden anhand eines Anwendungsbeispieles hergeleitet werden.

Ein Angebot von

Footer

  • Impressum
  • Sicherheit & Datenschutz
  • AGB
© Duden Learnattack GmbH, 2025