Direkt zum Inhalt

Pfadnavigation

  1. Startseite
  2. Physik Abitur
  3. 2 Mechanik
  4. 2.2 Kinematik
  5. 2.2.5 Der freie Fall
  6. Der Fallturm Bremen

Der Fallturm Bremen

Falltürme ermöglichen die Durchführung von Kurzzeitexperimenten unter den Bedingungen der Schwerelosigkeit. Ein solcher Fallturm befindet sich in Bremen und wird deshalb als „Fallturm Bremen“ bezeichnet.
Bei diesem Fallturm ist es möglich, bei einer Fallhöhe von 110 m im freien Fall ca. 4,5 Sekunden lang Schwerelosigkeit zu erreichen. Die Kurzzeitexperimente werden in einer speziell konstruierten Fallkapsel durchgeführt.

Schule wird easy mit KI-Tutor Kim und Duden Learnattack

  • Kim hat in Deutsch, Mathe, Englisch und 6 weiteren Schulfächern immer eine von Lehrkräften geprüfte Erklärung, Video oder Übung parat.
  • 24/7 auf Learnattack.de und WhatsApp mit Bildupload und Sprachnachrichten verfügbar. Ideal, um bei den Hausaufgaben und beim Lernen von Fremdsprachen zu unterstützen.
  • Viel günstiger als andere Nachhilfe und schützt deine Daten.
Jetzt 30 Tage risikofrei testen
Your browser does not support the video tag.

Solche Falltürme sind kostengünstige Experimentiereinrichtungen in Ergänzung zu den bestehenden oder geplanten Laboreinheiten bei Weltraumflügen und in Weltraumstationen. Mit dem Fallturm Bremen ist es möglich, mehrmals am Tag für jeweils 4,5 s im freien Fall über 110 m den Zustand der Schwerelosigkeit zu erreichen.

Physikalische Grundlagen

Unter Schwerelosigkeit oder Gewichtslosigkeit versteht man die Erscheinung, dass die Summe der Kräfte auf einen Körper null ist und damit der Körper in dem ihn umgebenden Raum schwebt. Schwerelosigkeit tritt bei frei fallenden Körpern auf. Sie üben keine Kraft auf eine mitfallende Unterlage oder Aufhängung aus. Genauer sind die Zusammenhänge beim Thema „Schwerelosigkeit“ erläutert.

Beschreibung des Fallturmes

Der Fallturm hat bis zur Spitze eine Gesamthöhe von 146 m. Die eigentliche Fallröhre ist 110 m hoch, hat einen Außendurchmesser von 8,5 m, einen Innendurchmesser von 3,5 m und am unteren Ende eine 11 m hohe Abbremskammer.
Damit ein freier Fall in der Röhre gewährleistet ist, muss der Luftwiderstand möglichst gering sein. Das wird erreicht, indem man durch leistungsfähige Pumpen den Druck in der Fallröhre auf ca. 1 Pascal, also auf etwa 1/100 000 des Normaldruckes, verringert. Das dauert für ein Experiment etwa 1,5 Stunden. Nimmt man die Zeiten für die Vorbereitung und Auswertung der Experimente hinzu, so können an einem Tag bis zu dreimal Experimente durchgeführt werden. Am Fuße des Turmes befinden sich umfangreiche Labor- und Werkstatteinrichtungen, die der Experimentiervorbereitung und -auswertung dienen.

Durchführung der Experimente

Die Experimente werden in einer speziell konstruierten Fallkapsel durchgeführt. Diese Kapsel ist druckdicht und extrem fest konstruiert. Sie fällt 110 m frei und landet in einem Behälter am Turmfuß. Als Abbremsmaterial wird feinkörniges Polystyren verwendet, das bis zu einer Höhe von 8 m aufgeschüttet werden kann. Die maximale Verzögerung ist kleiner als die 30fache Fallbeschleunigung.
In der Fallkapsel ist ein spezieller Rechner zur Steuerung und Überwachung der Experimente installiert. Zusätzlich werden eine Videokamera und eine Hochgeschwindigkeitskamera eingesetzt. Darüber hinaus können Daten zu einem in den Labors installierten Auswerterechner übertragen werden.

Lernhelfer (Duden Learnattack GmbH): "Der Fallturm Bremen." In: Lernhelfer (Duden Learnattack GmbH). URL: http://www.lernhelfer.de/index.php/schuelerlexikon/physik-abitur/artikel/der-fallturm-bremen (Abgerufen: 21. July 2025, 09:47 UTC)

Suche nach passenden Schlagwörtern

  • Schwerelosigkeit
  • Fallturm Bremen
  • Gewichtslosigkeit
  • Kurzzeitexperimente
  • Fallkapsel
  • freier Fall
  • Luftwiderstand
Jetzt durchstarten

Lernblockade und Hausaufgabenstress?

Entspannt durch die Schule mit KI-Tutor Kim und Duden Learnattack.

  • Kim hat in Deutsch, Mathe, Englisch und 6 weiteren Schulfächern immer eine von Lehrkräften geprüfte Erklärung, Video oder Übung parat.
  • 24/7 auf Learnattack.de und WhatsApp mit Bildupload und Sprachnachrichten verfügbar. Ideal, um bei den Hausaufgaben und beim Lernen von Fremdsprachen zu unterstützen.
  • Viel günstiger als andere Nachhilfe und schützt deine Daten.

Verwandte Artikel

Geladene Teilchen in elektrischen Feldern

Auf ein geladenes Teilchen wirkt im elektrischen Feld eine Kraft, die zur Beschleunigung des Ladungsträgers führt. Die Bahnkurve des Teilchens ist abhängig von der Richtung der Anfangsgeschwindigkeit. Bei einer Bewegung in Richtung oder entgegen der Richtung der Feldlinien erfolgt eine gleichmäßig beschleunigte Bewegung. Das wird z.B. genutzt, um schnelle Elektronen (einen Elektronenstrahl) zu erzeugen. Verläuft die Bewegung senkrecht zu den Feldlinien eines homogenen Feldes, dann bewegen sich die Ladungsträger auf einer parabelförmigen Bahn. Diese Ablenkung von der ursprünglichen geradlinigen Bewegung wird in Elektronenstrahlröhren zur Erzeugung von Bildern (z. B. bei Oszillografen) genutzt.

Kräfte bei der Kreisbewegung

Welche Kräfte bei einer Kreisbewegung wirken, hängt davon ab, welches Bezugssystem man zugrunde legt. Von einem Inertialsystem (unbeschleunigtes, ruhendes Bezugssystem) aus beschrieben gilt:

Damit sich ein Körper auf einer Kreisbahn bewegt, muss auf ihn eine Kraft in Richtung Zentrum der Kreisbewegung wirken. Diese Kraft wird als Radialkraft bezeichnet. Sie bewirkt die Radialbeschleunigung und hat den Betrag:

F r = m ⋅ v 2 r = m ⋅ ω 2 ⋅ r = m ⋅ 4 π 2 ⋅ r T 2 = m ⋅ 4 π 2 ⋅ r ⋅ n 2

Zu dieser Radialkraft existiert nach dem Wechselwirkungsgesetz eine gleich große, entgegengesetzt gerichtete Gegenkraft, die keine besondere Bezeichnung trägt.
Von einem mitrotierenden (beschleunigten) Bezugssystem aus stellt sich der Sachverhalt anders dar: Auf einen Körper wirkt eine radial nach außen gerichtete Trägheitskraft, die als Zentrifugalkraft bezeichnet wird.

Kräfte und ihre Messung

Der Begriff Kraft wird im Alltag und in der Physik in vielfältiger Weise verwendet. Während der Alltagsbegriff mit unterschiedlichen Begriffsinhalten genutzt wird, ist die physikalische Größe Kraft eindeutig definiert:
Die Kraft gibt an, wie stark ein Körper bewegt oder verformt wird. Sie ist eine Wechselwirkungsgröße und eine vektorielle (gerichtete) Größe. Die Wirkung einer Kraft ist abhängig von ihrem Betrag, ihrer Richtung und ihrem Angriffspunkt.


Formelzeichen: F → Einheit: ein Newton (1 N) 1 N = 1 kg ⋅ m s 2
Man unterscheidet u.a. elektrische Kräfte, magnetische Kräfte, Reibungskräfte, Druckkräfte, Radialkräfte, Gewichtskräfte, Schubkräfte, Spannkräfte und Zugkräfte, Adhäsionskräfte und Kohäsionskräfte, innere Kräfte und äußere Kräfte voneinander.

Kurvenfahrten

Zum sicheren Durchfahren einer Kurve muss bei jedem Fahrzeug eine Kraft in Richtung Zentrum der Kreisbewegung wirken. Diese radial gerichtete Kraft, die Radialkraft, wird durch die Reibung zwischen Straße und Reifen aufgebracht.
Die aufzubringende Radialkraft ist umso größer,

  • je größer die Geschwindigkeit des Fahrzeuges ist,
  • je größer seine Masse ist,
  • je kleiner der Krümmungsradius der Kurve ist.

Welche Kräfte bei einer Kurvenfahrt tatsächlich wirken und wie schnell man eine Kurve durchfahren kann, hängt auch davon ab, ob die Kurve überhöht ist und ob man die Bewegung eines vierrädrigen oder eines zweirädrigen Fahrzeuges betrachtet.

Reibung und Reibungskräfte

Wenn Körper aufeinanderhaften, gleiten oder rollen, tritt Reibung auf. Dabei wirken zwischen den Körpern Kräfte, die als Reibungskräfte bezeichnet werden. Reibungskräfte sind immer so gerichtet, dass sie der Bewegung entgegenwirken und diese hemmen oder verhindern.
Die wesentliche Ursache für das Auftreten von Reibungskräften liegt in der Oberflächenbeschaffenheit der Körper begründet.
Je nach der Art der Bewegung der Körper aufeinander unterscheidet man zwischen Haftreibung, Gleitreibung und Rollreibung. Die betreffenden Kräfte werden als Haftreibungskraft, Gleitreibungskraft und Rollreibungskraft bezeichnet.

Ein Angebot von

Footer

  • Impressum
  • Sicherheit & Datenschutz
  • AGB
© Duden Learnattack GmbH, 2025