Direkt zum Inhalt

Pfadnavigation

  1. Startseite
  2. Physik
  3. 4 Elektrizitätslehre
  4. 4.5 Elektrische Leitungsvorgänge
  5. 4.5.5 Elektrische Leitung in Halbleitern
  6. Bipolartransistor

Bipolartransistor

Bipolartransistoren sind Transistoren, die aus zwei pn-Übergängen und damit insgesamt aus drei unterschiedlich dotierten Schichten desselben Grundmaterials bestehen. Dabei können die dotierten Zonen in der Folge npn oder pnp aneinandergereiht sein. Dementsprechend unterscheidet man zwischen pnp-Transistoren und npn-Transistoren.
Transistoren werden als elektronische Schalter oder als Verstärker genutzt.

Schule wird easy mit KI-Tutor Kim und Duden Learnattack

  • Kim hat in Deutsch, Mathe, Englisch und 6 weiteren Schulfächern immer eine von Lehrkräften geprüfte Erklärung, Video oder Übung parat.
  • 24/7 auf Learnattack.de und WhatsApp mit Bildupload und Sprachnachrichten verfügbar. Ideal, um bei den Hausaufgaben und beim Lernen von Fremdsprachen zu unterstützen.
  • Viel günstiger als andere Nachhilfe und schützt deine Daten.
Jetzt 30 Tage risikofrei testen
Your browser does not support the video tag.

Bipolartransistoren sind Transistoren, die aus zwei pn-Übergängen und damit insgesamt aus drei unterschiedlich dotierten Schichten desselben Grundmaterials bestehen. Dabei können die dotierten Zonen in der Folge npn oder pnp aneinandergereiht sein. Dementsprechend unterscheidet man zwischen pnp-Transistoren und npn-Transistoren.
An den Leitungsvorgängen im Transistor sind sowohl Elektronen als auch Defektelektronen beteiligt. Die drei unterschiedlich dotierten Schichten der Bipolartransistoren heißen Emitter (E), Basis (B) und Kollektor (C). Alle drei Schichten sind mit einem Spannungsanschluss versehen. Indem man an diesen Anschlüssen äußere Spannungen anlegt, kann man die Breite der pn-Übergänge und daher ihren Widerstand beeinflussen. Damit lassen sich Ströme mithilfe von Transistoren steuern.

Wirkungsweise eines Transistors

Um die grundlegende Wirkungsweise eines Transistors zu verstehen, darf man die beiden pn-Übergänge als zwei hintereinandergeschaltete Dioden ansehen, deren Durchlassrichtungen entgegengesetzt sind.

Legt man zwischen Emitter und Kollektor eine Spannung, dann wird durch den Transistor - egal wie die Spannungsquelle gepolt ist - kein Strom fließen. Man nennt den Stromkreis zwischen E und C den Kollektorstromkreis.

Schaltet man zwischen E und B eine weitere Spannungsquelle ein, dann kann bei entsprechender Polung der pn-Übergang zwischen Emitter und Basis die Durchlassrichtung geschaltet werden. Bei einem npn-Transistor fließen dann Elektronen von E nach B im so genannten Basisstromkreis. Mit einem Strommesser kann man diesen Elektronenfluss als Basisstrom nachweisen.

Die Elektronen, die von E kommend in die Basis gelangen, beeinflussen auch den pn-Übergang zwischen B und C. Dies hängt mit der geringen Dicke der Basis zusammen. Ist der Kollektor mit dem positiven Spannungspol im Kollektorstromkreis verbunden, dann werden die negativ geladenen Elektronen zum Kollektor hin aus der Basis abgesaugt. Nur etwa 1 % der Elektronen erreichen den Basisanschluss oder anders formuliert: Da wesentlich mehr Elektronen in den Kollektorstromkreis gelangen, fließt dort ein wesentlich größerer Strom als im Basisstromkreis.

Transistor als Schalter und als Verstärker

Im Kollektorstromkreis eines Transistors fließt nur dann ein Strom, wenn zwischen Emitter und Basis eine Spannung anliegt. Ist diese Spannung null, so fließt kein Kollektorstrom. Mit dem Basisstrom kann also der Kollektorstrom ein- bzw. ausgeschaltet werden. Damit kann ein Transistor als elektronischer Schalter genutzt werden. Der Zusammenhang zwischen der Basis-Emitter-Spannung und der Kollektorstromstärke kommt in der I C - U B E -Kennlinie zum Ausdruck (Bild 2).

  • Zusammenhang zwischen Basis-Emitter-Spannung und Kollektorstromstärke

Die Verstärkerwirkung von Bipolarstransistoren beruht darauf, dass eine kleine Änderung der Basisstromstärke eine große Änderung der Kollektorstromstärke hervorruft (Bild 3). Der Quotient aus der Änderung der Kollektorstromstärke und der Änderung der zugehörigen Basisstromstärke wird als Stromverstärkungsfaktor B bezeichnet:

B = Δ I C Δ I B

Bei dem Transistor, dessen Kennlinie in Bild 4 dargestellt ist, beträgt der Stromverstärkungsfaktor B = 100. Das ist ein durchschnittlicher Wert.

  • Zusammenhang zwischen Basisstromstärke und Kollektorstromstärke
Lernhelfer (Duden Learnattack GmbH): "Bipolartransistor." In: Lernhelfer (Duden Learnattack GmbH). URL: http://www.lernhelfer.de/index.php/schuelerlexikon/physik/artikel/bipolartransistor (Abgerufen: 20. May 2025, 17:57 UTC)

Suche nach passenden Schlagwörtern

  • Basis
  • Bipolartransistor
  • Emitter
  • Kollektor
  • npn-Transistor
  • Basisstromkreis
  • Verstärkerwirkung
  • pnp-Transistor
  • Kollektorstromkreis
Jetzt durchstarten

Lernblockade und Hausaufgabenstress?

Entspannt durch die Schule mit KI-Tutor Kim und Duden Learnattack.

  • Kim hat in Deutsch, Mathe, Englisch und 6 weiteren Schulfächern immer eine von Lehrkräften geprüfte Erklärung, Video oder Übung parat.
  • 24/7 auf Learnattack.de und WhatsApp mit Bildupload und Sprachnachrichten verfügbar. Ideal, um bei den Hausaufgaben und beim Lernen von Fremdsprachen zu unterstützen.
  • Viel günstiger als andere Nachhilfe und schützt deine Daten.

Verwandte Artikel

Darlingtonschaltung

Die Darlingtonschaltung gehört zu den Grundschaltungen, die man mit Transistoren erstellen kann. Sie kommt dann zum Einsatz, wenn man ein Signal sehr hoch verstärken möchte.

Feuermelder

Automatische Feuermelder lösen ein Warnsignal aus, sofern die Raumtemperatur in ihrer Umgebung einen bestimmten Wert übersteigt. Als elektrische Signalgeber eignen sich entweder Bimetallstreifen oder Halbleiterbauelemente.

Digitaltechnik

Während sich bei herkömmlichen elektrischen oder elektronischen Schaltungen (Analogschaltungen) Strom und Spannung stetig verändern, arbeiten Digitalschaltungen nur mit den zwei Zuständen leitend und nichtleitend. Digitalschaltungen stellen die Grundlage aller modernen Kommunikations- und Informationssysteme dar.

Fotodiode

Fotodioden besitzen einen pn-Übergang, der durch äußeres Licht beleuchtet werden kann. Dadurch bilden sich infolge des inneren Fotoeffektes zusätzliche Ladungsträger im Halbleitermaterial. Fotodioden werden als einfache Lichtmesser eingesetzt, dienen aber auch als Empfänger in Lichtleiterkabeln. Als Solarzellen nutzt man sie zur Umwandlung von Lichtenergie in elektrische Energie.

Feldeffekttransistor

Anders als bei herkömmlichen Transistoren fließt bei Feldeffekttransistoren kein Strom über pn-Übergänge, sondern über einen Halbleiterkanal eines Leitungstyps (n- oder p-leitend). Die elektrische Leitfähigkeit des Kanals kann mithilfe eines äußeren elektrischen Feldes beeinflusst werden. Feldeffekttransistoren eignen sich sehr gut zur Verwendung in integrierten Schaltkreisen.

Ein Angebot von

Footer

  • Impressum
  • Sicherheit & Datenschutz
  • AGB
© Duden Learnattack GmbH, 2025