Direkt zum Inhalt

6 Suchergebnisse

Alle Filter zurücksetzen
Artikel lesen

Blaise Pascal

BLAISE PASCAL (1623 bis 1662), französischer Mathematiker
* 19. Juni 1623 Clermont
† 19. August 1662 Paris

BLAISE PASCAL schuf gemeinsam mit PIERRE DE FERMAT die Grundlagen der Wahrscheinlichkeitsrechnung. Mit seinem Namen verbunden sind das pascalsche Zahlendreieck, der pascalsche Satz sowie die Rechenmaschine „Pascaline“. Auch auf naturwissenschaftlichem Gebiet war BLAISE PASCAL tätig, er schuf u. a. die Grundlagen der Hydrostatik.

Artikel lesen

Exponentialgleichungen, Anwendungen

Eine Reihe von inner- und außermathematischen Anwendungsaufgaben führt aus das Lösen von Exponentialgleichungen.
Als Beispiele werden Aufgaben zum atmosphärischen Luftdruck und zum Entalden eines Kondensators bzw. zur Zinseszinsrechnung angegeben.

Artikel lesen

Blaise Pascal

* 19. Juni 1623 Clermont
† 19. August 1662 Paris

BLAISE PASCAL schuf gemeinsam mit FERMAT die Grundlagen der Wahrscheinlichkeitsrechnung. Mit seinem Namen verbunden sind das pascalsche Zahlendreieck, der Satz von PASCAL sowie die Rechenmaschine „Pascaline“.
Auch auf naturwissenschaftlichem Gebiet war BLAISE PASCAL tätig, u.a. schuf er die Grundlagen der Hydrostatik.

Artikel lesen

Evangelista Torricelli

* 15. Oktober 1608 Faenza bei Florenz
† 25. Oktober 1647 Florenz

EVANGELISTA TORRICELLI benutzte bei der Inhaltsbestimmung von Flächen und Körpern infinitesimale Methoden, wodurch die weitere Entwicklung der Integralrechnung maßgeblich beeinflusst wurde.
In der Physik erlangte TORRICELLI vor allem durch seine Untersuchungen zum Luftdruck und auf dem Gebiet der Hydraulik Bedeutung. Die Maßeinheit Torr ist nach ihm benannt worden.

Artikel lesen

Die barometrische Höhenformel

Der Druck der uns umgebenden Luft wird durch das Gewicht der Erdatmosphäre verursacht. Der französische Naturforscher BLAISE PASCAL (1623 bis 1663) hat im Jahre 1648 durch vorbildliche Messungen überzeugend nachgewiesen, dass der Luftdruck mit zunehmender Höhe fällt.
Die Berechnung des Luftdrucks in Abhängigkeit von der Höhe kann nach der barometrischen Höhenformel erfolgen. Man erhält sie als Lösung einer Differenzialgleichung, die auf der Grundlage einiger notwendiger vereinfachender Annahmen und dem Gesetz von BOYLE und MARIOTTE modelliert wird.

Artikel lesen

Lösen von Anwendungsaufgaben mithilfe von Exponentialgleichungen

Eine Reihe von inner- und außermathematischen Anwendungsaufgaben führt auf das Lösen von Exponentialgleichungen.
Als Beispiele werden Aufgaben zur Zinseszinsrechnung, zum atmosphärischen Luftdruck sowie zum Entladen eines Kondensators angegeben.

6 Suchergebnisse

Fächer
  • Mathematik (6)
Klassen
  • 5. Klasse (2)
  • 6. Klasse (2)
  • 7. Klasse (2)
  • 8. Klasse (2)
  • 9. Klasse (2)
  • 10. Klasse (2)
  • Oberstufe/Abitur (4)
Ein Angebot von

Footer

  • Impressum
  • Sicherheit & Datenschutz
  • AGB
© Duden Learnattack GmbH, 2025