Direkt zum Inhalt

3 Suchergebnisse

Alle Filter zurücksetzen
Artikel lesen

Allgemeines zu Beweisverfahren

Betrachtet man die Mathematik als Gebäude, dann bilden Grundbegriffe und als wahr angenommene Grundaussagen (so genannte Axiome bzw. Postulate) das Fundament. Der Aufbau des Gebäudes vollzieht sich im Wesentlichen dadurch, dass ausgehend von den Grundbegriffen weitere Begriffe (sogenannte abgeleitete Begriffe) gebildet (definiert) werden sowie Zusammenhänge zwischen ihnen erkannt und in Aussagen formuliert werden. Als wahr erkannte Aussagen werden als Sätze (Lehrsätze) in das Gebäude aufgenommen und bei dessen weiterer Vervollkommnung verwendet.
Der Nachweis der Wahrheit einer Aussage, eines mathematischen Satzes, erfolgt durch einen Beweis. Man unterscheidet direkte und indirekte Beweise.

Artikel lesen

Gruppen

Eine nichtleere Menge G von Elementen a, b, c, ... heißt Gruppe, wenn in ihr eine Operation ∘ erklärt ist, die folgenden Axiomen genügt:

  1. Die Operation ∘ ist assoziativ,
    d.h. für alle Elemente a ,     b ,     c ∈ G gilt a ∘ ( b ∘ c ) = ( a ∘ b ) ∘ c .
  2. Die Operation ∘ ist umkehrbar, d.h. zu beliebigen Elementen a ,     b ∈ G sind die Gleichungen a ∘ x = b und y ∘ a = b       ( mit x ∈ G und y ∈ G )   lösbar.

Man nennt G eine abelsche Gruppe, wenn zusätzlich noch gilt:

  1. Die Operation ∘ ist kommutativ, d.h. für alle a ,     b ∈ G gilt a ∘ b = b ∘ a .
Artikel lesen

Berühmte mathematische Sätze und Vermutungen

Die Mathematik stellt ein vielfältig verwobenes System von mathematischen Begriffen, Aussagen, Axiomen, Regeln usw. unterschiedlicher Abstraktionshöhe dar, das in einer langen Geschichte gewachsen ist und sich ständig weiterentwickelt. Dieser Prozess hat dabei seine Ursache sowohl in inneren Bedürfnissen der Mathematik selbst als auch in Anforderungen der Praxis.
Aussagen, deren Wahrheitswert noch nicht bewiesen werden konnte, tragen den Charakter von Vermutungen. So stehen die Beweise beispielsweise für die goldbachsche Vermutung oder die Vermutung über Primzahlzwillinge noch aus.

3 Suchergebnisse

Fächer
  • Mathematik (3)
Klassen
  • 5. Klasse (3)
  • 6. Klasse (3)
  • 7. Klasse (3)
  • 8. Klasse (3)
  • 9. Klasse (3)
  • 10. Klasse (3)
  • Oberstufe/Abitur (3)
Ein Angebot von

Footer

  • Impressum
  • Sicherheit & Datenschutz
  • AGB
© Duden Learnattack GmbH, 2025