Direkt zum Inhalt

4 Suchergebnisse

Alle Filter zurücksetzen
Artikel lesen

Funktionen, y = mx

Jeder direkt proportionale Zusammenhang zwischen zwei Größen y und x kann durch eine spezielle lineare Funktion mit der Gleichung
  y = ( x ) = m x + n   ( m ≠ 0 )
beschrieben werden.
Definitionsbereich und Wertebereich (Wertevorrat) von f ist die Menge der reellen Zahlen ℝ . Der Graph von f ist eine Gerade, die durch den Koordinatenursprung verläuft

Artikel lesen

Funktionen, y = mx + n

Eine Funktion f mit einer Gleichung der Form
  y = f ( x ) = m x + n   ( m ,   n ∈ ℝ )
oder einer Gleichung, die durch äquivalentes Umformen in diese Form überführt werden kann, heißt lineare Funktion.
Für lineare Funktionen ist der Definitionsbereich im Allgemeinen die Menge der reellen Zahlen (so nicht das mathematische oder das entsprechenden Anwendungsproblem einen Einschränkung verlangt), was dann auch für den Wertebereich ( m ,   n ≠ 0 ) gilt. Die Zahlen m und n sind Parameter.

Artikel lesen

Grafisches Differenzieren

Die Ableitung einer Funktion f an einer Stelle x 0 gibt bekanntermaßen den Anstieg der Tangente an den Graphen der Funktion im Punkt P 0 ( x 0 ;   f ( x 0 ) ) an.
Ebenso spricht man vom Anstieg des Graphen im Punkt P 0 .
Im Folgenden wird ein Verfahren zur Bestimmung der Ableitung an einer Stelle x 0 mittels zeichnerischen oder grafischen Differenzierens vorgestellt.

Artikel lesen

Funktionen mit der Gleichung y = f(x) = mx + n

Eine Funktion f mit einer Gleichung der Form
  y = f ( x ) = m x + n   ( m ,   n ∈ ℝ )
oder einer Gleichung, die durch äquivalentes Umformen in diese Form überführt werden kann, heißt lineare Funktion.
Für lineare Funktionen ist der Definitionsbereich im Allgemeinen die Menge der reellen Zahlen (so nicht das mathematische oder das entsprechenden Anwendungsproblem einen Einschränkung verlangt), was dann auch für den Wertebereich ( m ,   n ≠ 0 ) gilt. Die Zahlen m und n sind Parameter.

4 Suchergebnisse

Fächer
  • Mathematik (4)
Klassen
  • 5. Klasse (2)
  • 6. Klasse (2)
  • 7. Klasse (2)
  • 8. Klasse (2)
  • 9. Klasse (2)
  • 10. Klasse (2)
  • Oberstufe/Abitur (2)
Ein Angebot von

Footer

  • Impressum
  • Sicherheit & Datenschutz
  • AGB
© Duden Learnattack GmbH, 2025