Direkt zum Inhalt

4 Suchergebnisse

Alle Filter zurücksetzen
Artikel lesen

Winkelfunktionen am Kreis

Jedem spitzen Winkel in einem rechtwinkligen Dreieck sind umkehrbar eindeutig Seitenverhältnisse zugeordnet, die man als Sinus, Kosinus, Tangens bzw. Kotangens des betreffenden Winkels bezeichnet. Es handelt sich hierbei also um Funktionen mit der Menge der Winkel 0 < x < π 2 als Definitionsbereich und der Menge der Seitenverhältnisse als Wertebereich.
Damit eine Zahl-Zahl-Beziehung entsteht, verwenden wir das Bogenmaß der Winkel.

Artikel lesen

Winkelfunktionen am rechtwinkligen Dreieck

Bei allen zueinander ähnlichen rechtwinkligen Dreiecken sind die Quotienten aus den Längen von je zwei einander entsprechenden Seiten gleich.
Für die nebenstehend bzw. in Bild 1 dargestellten Dreiecke A 1   B 1   C 1 ,       A 1   B 2   C 2       und       A 1   B 3   C 3 , die einander ähnlich sind, gilt nach den Ähnlichkeitssätzen:
  B 1 C 1 ¯ A 1 B 1 ¯ = B 2 C 2 ¯ A 1 B 2 ¯ = B 3 C 3 ¯ A 1 B 3 ¯ A 1 C 1 ¯ A 1 B 1 ¯ = A 1 C 2 ¯ A 1 B 2 ¯ = A 1 C 3 ¯ A 1 B 3 ¯ B 1 C 1 ¯ A 1 C 1 ¯ = B 2 C 2 ¯ A 1 C 2 ¯ = B 3 C 3 ¯ A 1 C 3 ¯
Solche für zueinander ähnliche rechtwinklige Dreiecke übereinstimmenden Quotienten (Verhältnisse) werden mit Bezug auf einen der beiden nicht rechten Winkel als der Sinus, der Kosinus, der Tangens bzw. der Kotangens dieses Winkels bezeichnet.

Artikel lesen

Winkelfunktionen, Graphen und Eigenschaften

Graphen von Winkelfunktionen kann man auf die bekannte Weise unter Verwendung einer Wertetabelle zeichnen.
Es ist allerdings auch möglich, ausgehend von der Definition dieser Funktionen am Einheitskreis die zu einem Winkel als Abszisse eines Graphenpunktes gehörende Ordinate sofort aus der Zeichnung zu entnehmen. Gestützt auf diesen Weg der Konstruktion der Funktionsgraphen lassen sich einige wichtige Eigenschaften der Winkelfunktionen ermitteln.

Artikel lesen

Winkelfunktionswerte, Beziehungen

Zwischen Funktionswerten der verschiedenen Winkelfunktionen bestehen vielfältige Beziehungen, deren Kenntnis für die Untersuchung theoretischer Zusammenhänge wie auch für Berechnungen sehr vorteilhaft sein können. Dies betrifft sowohl die Funktionswerte verschiedener Winkelfunktionen zu ein und demselben Argument als auch die Werte einer bestimmten Winkelfunktion für verschiedene Argumente.

4 Suchergebnisse

Fächer
  • Mathematik (4)
Klassen
  • 5. Klasse (4)
  • 6. Klasse (4)
  • 7. Klasse (4)
  • 8. Klasse (4)
  • 9. Klasse (4)
  • 10. Klasse (4)
Ein Angebot von

Footer

  • Impressum
  • Sicherheit & Datenschutz
  • AGB
© Duden Learnattack GmbH, 2025