Direkt zum Inhalt

6 Suchergebnisse

Alle Filter zurücksetzen
Artikel lesen

Hans Adolf Krebs

* 25.08.1900 in Hildesheim
† 22.11.1981 in Oxford

1937 beschrieb HANS A. KREBS in einem kurzen, nur 700 Worte umfassenden Artikel eine bahnbrechende Erkenntnis. Dem in Sheffield, Yorkshire, forschenden Wissenschaftler war es gelungen, die durchgängige Reaktionskette für den aeroben Endabbau der Zwischenprodukte des innerzellulären Kohlenhydrat-, Protein- und Fettstoffwechsels zu formulieren. Er nannte den Reaktionsablauf Citronensäure(Citrat)-, oder auch Tricarbonsäurezyklus. 1953 wurde HANS A. KREBS für diese Entdeckung, zusammen mit FRITZ ALBERT LIPMANN (1899-1986), mit dem Nobelpreis für Medizin oder Physiologie ausgezeichnet. Er gilt als Mitbegründer der modernen Biochemie.

Artikel lesen

Citratzyklus

Der Citratzyklus ist eine 1937 von HANS ADOLF KREBS (1900-1981), G. MARTIUS und F. KNOOP etwa gleichzeitig entdeckte zyklische biochemische Reaktionskette, welche in allen lebenden Zellen abläuft. Er verläuft unter Beteiligung von Zitronensäure (Citrat), die zum Zwecke der Gewinnung von Reduktionsäquivalenten in andere organische Säuren umgewandelt wird. Er oxidiert in acht Schritten Acetyl-Reste zu Wasser und Kohlenstoffdioxid. Die dabei gewonnenen Reaktionsprodukte werden an die Atmungskette weitergegeben. Durch anschließende oxidative Phosphorylierung gewinnt die Zelle aus diesem Vorgang 10 ATP pro Acetyl-Gruppe.
Außerdem erfüllt der Citratzyklus eine Schlüsselfunktion im intermediären Stoffwechsel der Zelle. Er verbindet den energieliefernden Endabbau des aus dem Protein-, Fett- und Kohlenhydratstoffwechsel stammenden Zwischenprodukts Acetyl-Coenzym A mit der Erzeugung zahlreicher Vorstufen für anabole Biosynthesewege.

Artikel lesen

Atome, Struktur

Die erste Hälfte des 20. Jahrhunderts stand ganz im Zeichen der Kernphysik und der Quantenchemie. Die neu entdeckten radioaktiven Strahlen ermöglichten neue Experimente, die zur rasanten Weiterentwicklung des Atommodells von RUTHERFORD (1911) über BOHR (1913) bis hin zum modernen quantenmechanischen Atommodell (1927) führten. Das verbesserte Verständnis der Struktur der Materie wird auch an der Weiterentwicklung der Bindungstheorie deutlich.
Durch kernchemische Experimente wurden neue Elemente entdeckt, darunter das hoch radioaktive Plutonium. Während des 2. Weltkriegs stellten sich Chemiker und Physiker in den Dienst des Militärs und entwickelten neue Sprengstoffe, giftige Kampfstoffe sowie die erste Atombombe.
Biochemiker erkundeten die Strukturen von Naturstoffen und konnten diese nach und nach im Labor synthetisieren. Beispiele sind die Eiweiße, die Vitamine und die Hormone, deren Wirkprinzipien in biochemischen Prozessen erkannt wurden. Außerdem gewann die Synthese von Arzneistoffen (Antibiotika, Schmerzmittel etc.) zunehmend an Bedeutung und wurde ebenfalls industriell durchgeführt.
Die chemische Industrie erlebte einen ungeahnten Aufschwung, da neben Medikamenten auch der Bedarf an Erdölprodukten stieg. Diese wurden sowohl zu Kraftstoffen verarbeitet als auch zu den neuen Werkstoffen des 20. Jahrhunderts, den makromolekularen Kunststoffen. Das Zeitalter der Plaste, Elaste und Kunstfasern begann in den 30er-Jahren mit der Beherrschung der großtechnischen Synthesen von PVC, Nylon, Polyurethanen und Siliconen.

Artikel lesen

Das Zusammenwirken von Biologie und Chemie

Jede einzelne naturwissenschaftliche Disziplin beschäftigt sich nur mit Teilbereichen der Natur unter ganz bestimmten, ausgewählten Gesichtspunkten. Unsere natürliche Umwelt ist aber ein einheitliches Ganzes. Um Erscheinungen der Natur richtig und vollständig zu verstehen, müssen meist Erkenntnisse aus verschiedenen naturwissenschaftlichen Gebieten einbezogen werden. So erfolgt zwar sowohl in der Biologie als auch in der Chemie eine Schwerpunktsetzung und die Herausstellung eines Hauptuntersuchungsfelds, jedoch kommt es immer mehr zu inhaltlichen und methodischen Überschneidungen. In der Biochemie ist das besonders ausgeprägt.

Artikel lesen

Die Aufklärung der inneren Struktur der Atome (1901-1950)

Die erste Hälfte des 20. Jahrhunderts stand ganz im Zeichen der Kernphysik und der Quantenchemie. Die neu entdeckten radioaktiven Strahlen ermöglichten neue Experimente, die zur rasanten Weiterentwicklung des Atommodells von RUTHERFORD (1911) über BOHR (1913) bis hin zum modernen quantenmechanischen Atommodell (1927) führten. Das verbesserte Verständnis der Struktur der Materie wird auch an der Weiterentwicklung der Bindungstheorie deutlich.
Durch kernchemische Experimente wurden neue Elemente entdeckt, darunter das hoch radioaktive Plutonium. Während des 2. Weltkriegs stellten sich Chemiker und Physiker in den Dienst des Militärs und entwickelten neue Sprengstoffe, giftige Kampfstoffe sowie die erste Atombombe.
Biochemiker erkundeten die Strukturen von Naturstoffen und konnten diese nach und nach im Labor synthetisieren. Beispiele sind die Eiweiße, die Vitamine und die Hormone, deren Wirkprinzipien in biochemischen Prozessen erkannt wurden. Außerdem gewann die Synthese von Arzneistoffen (Antibiotika, Schmerzmittel etc.) zunehmend an Bedeutung und wurde ebenfalls industriell durchgeführt.
Die chemische Industrie erlebte einen ungeahnten Aufschwung, da neben Medikamenten auch der Bedarf an Erdölprodukten stieg. Diese wurden sowohl zu Kraftstoffen verarbeitet als auch zu den neuen Werkstoffen des 20. Jahrhunderts, den makromolekularen Kunststoffen. Das Zeitalter der Plaste, Elaste und Kunstfasern begann in den 30er-Jahren mit der Beherrschung der großtechnischen Synthesen von PVC, Nylon, Polyurethanen und Siliconen.

Artikel lesen

Citratzyklus

Der Citratzyklus ist eine 1937 von H.A. KREBS, G. MARTIUS und F. KNOPP etwa gleichzeitig entdeckte zyklische biochemische Reaktionskette, welche in allen lebenden Zellen abläuft. Er verläuft unter Beteiligung von Zitronensäure (Citrat), die zum Zwecke der Gewinnung von Reduktionsäquivalenten in andere organische Säuren umgewandelt wird. Er oxidiert in acht Schritten Acetyl-Reste zu Wasser und Kohlenstoffdioxid. Die dabei gewonnenen Reaktionsprodukte werden an die Atmungskette weitergegeben. Durch anschließende oxidative Phosphorylierung gewinnt die Zelle aus diesem Vorgang 10 ATP pro Acetyl-Gruppe.

Außerdem erfüllt der Citratzyklus eine Schlüsselfunktion im intermediären Stoffwechsel der Zelle. Er verbindet den energieliefernden Endabbau des aus dem Protein-, Fett- und Kohlenhydratstoffwechsel stammenden Zwischenprodukts Acetyl-Coenzym A mit der Erzeugung zahlreicher Vorstufen für anabole Biosynthesewege.

6 Suchergebnisse

Fächer
  • Biologie (2)
  • Chemie (4)
Klassen
  • 5. Klasse (1)
  • 6. Klasse (1)
  • 7. Klasse (1)
  • 8. Klasse (1)
  • 9. Klasse (1)
  • 10. Klasse (1)
  • Oberstufe/Abitur (5)
Ein Angebot von

Footer

  • Impressum
  • Sicherheit & Datenschutz
  • AGB
© Duden Learnattack GmbH, 2025