Direkt zum Inhalt

4 Suchergebnisse

Alle Filter zurücksetzen
Artikel lesen

Euklid

EUKLID VON ALEXANDRIA (etwa 365 bis etwa 300 v. Chr.), griechisch-hellenistischer Mathematiker

EUKLID fasste in den „Elementen“ wesentliche Teile des mathematischen Wissens seiner Zeit zusammen und gründete sie auf Axiome bzw. Postulate. Eine besondere Rolle spielte in der Geschichte der Mathematik EUKLIDs fünftes Postulat, das sogenannte Parallelenaxiom. Der Versuch, dieses Axiom zu beweisen, führte zu einer Gabelung in die euklidische Geometrie einerseits und nichteuklidische Geometrien andererseits.
Mit dem Namen EUKLIDs verbunden sind weiterhin die Begriffe euklidischer Algorithmus, euklidischer Beweis sowie der Satz von EUKLID.
Bekannt sind ferner Arbeiten EUKLIDs zur geometrischen Optik.

Artikel lesen

Euklidischer Algorithmus

Der sogenannte euklidische Algorithmus ist ein Verfahren zum Ermitteln des größten gemeinsamen Teilers (ggT) zweier Zahlen.
Beim euklidischen Algorithmus wird wie folgt verfahren:
Man teilt die größere durch die kleinere Zahl. Geht die Division auf, ist der Divisor der ggT. Geht die Division nicht auf, bleibt ein Rest. Dieser Rest ist der neue Divisor. Der alte Divisor wird zum Dividenden. Nun setzt man das Verfahren fort.
Nach endlich vielen Schritten erhält man den ggT.

Artikel lesen

Euklid von Alexandria

* etwa 365 v.Chr.
† etwa 300 v.Chr.

EUKLID fasste in den „Elementen“ wesentliche Teile des mathematischen Wissens seiner Zeit zusammen und gründete es auf Axiome und Postulate (Axiomensystem der euklidischen Geometrie). EUKLIDS fünftes Postulat, das sogenannte Parallelenaxiom, spielte in der Geschichte der Mathematik eine besondere Rolle. Der Versuch, dieses Axioms zu beweisen, führte zu einer Gabelung in die euklidische Geometrie einerseits und in nichteuklidische Geometrien andererseits.
Bekannt sind ferner Arbeiten EUKLIDS zur geometrischen Optik.

Artikel lesen

Diophantische Gleichungen

Eine Gleichung der Form a x + b y = c mit ganzzahligen Koeffizienten a, b und c, für die ganze Zahlen x und y als Lösungen gesucht sind, heißt eine (lineare) diophantische Gleichung in zwei Unbekannten.
Diophantische Gleichungen können gelöst werden durch systematisches Probieren, mit der Methode der korrespondieren Kongruenzen, mittels formaler Bruchschreibweise sowie mithilfe des euklidischen Algorithmus.

4 Suchergebnisse

Fächer
  • Mathematik (4)
Klassen
  • 5. Klasse (2)
  • 6. Klasse (2)
  • 7. Klasse (2)
  • 8. Klasse (2)
  • 9. Klasse (2)
  • 10. Klasse (2)
  • Oberstufe/Abitur (2)
Ein Angebot von

Footer

  • Impressum
  • Sicherheit & Datenschutz
  • AGB
© Duden Learnattack GmbH, 2025