Direkt zum Inhalt

7 Suchergebnisse

Alle Filter zurücksetzen
Artikel lesen

Felix Christian Klein

* 25. April 1849 Düsseldorf
† 22. Juni 1925 Göttingen

FELIX KLEIN wirkte u.a. in Erlangen, München, Leipzig und Göttingen. An allen Wirkungsstätten bemühte er sich erfolgreich, die Stellung der Mathematik zu verbessern, und hatte insbesondere großen Anteil an dem Aufstieg Göttingens zu einem führenden Zentrum der mathematischen Forschung.
Als wichtigste Forschungsergebnisse KLEINS sind zum einen die projektive Begründung der nichteuklidischen Geometrien, also jener Geometrien, in denen das Parallelenpostulat nicht erfüllt ist, und zum anderen die Systematisierung der Geometrien im Rahmen des „Erlanger Programms“ zu nennen. Erwähnenswert ist ferner sein Bemühen um die Verbesserung des mathematischen Unterrichts an den Schulen.

Artikel lesen

Bernard Placidus Johann Nepomuk Bolzano

* 5. Oktober 1781 Prag
† 18. Dezember 1848 Prag

Der böhmische Theologe BERNARD BOLZANO leistete wesentliche Beiträge zu Grundlagen der Analysis, insbesondere zum näherungsweisen Bestimmen von Nullstellen.
Er gilt zudem als ein Wegbereiter der modernen Logik und Mengenlehre.

Artikel lesen

Augustin Louis Cauchy

* 21. August 1789 Paris
† 23. Mai 1857 Sceaux bei Paris

AUGUSTIN LOUIS CAUCHY war vorrangig auf dem Gebiet der Analysis tätig. Er entwickelte die von LEIBNIZ und NEWTON aufgestellten Grundlagen weiter, indem er sie als zusammenhängende Theorie formulierte und entsprechende Aussagen bewies. Zudem begründete er die Funktionentheorie einer komplexen Variablen.

Artikel lesen

Umgebungen

Der Begriff der Umgebung ist in der Analysis in verschiedenen Zusammenhängen von Bedeutung, z.B. bei der Definition des Grenzwertes von Zahlenfolgen oder Funktionen bzw. bei der Erklärung der Begriffe Maximum und Minimum von Funktionen.

Artikel lesen

Geschichte der Analysis

Die Analysis (oder auch Infinitesimalrechnung) beschäftigt sich im Wesentlichen mit der Differenzial- und Integralrechnung.
Ausgangspunkt für die Integralrechnung war das schon in der Antike betrachtete Problem der Bestimmung des Inhalts von Flächen und Körpern, wie etwa von Rotationskörpern.
Die Differenzialrechnung hat ihre Wurzeln dagegen im Tangentenproblem, mit dem sich Mathematiker im 17. Jahrhundert intensiver beschäftigten.
Im 18. Jahrhundert wurde der Zusammenhang zwischen dem Differenzieren und Integrieren erkannt und im Hauptsatz der Differenzial- und Integralrechnung formuliert. Hierzu trugen wesentlich ISAAC NEWTON und GOTTFRIED WILHELM LEIBNIZ bei.

Artikel lesen

Mathematik

Die Mathematik ist vor allem gekennzeichnet durch ihren weitestgehend deduktiven (axiomatischen) Aufbau, durch die Genauigkeit ihrer Begriffe sowie die Strenge ihrer Beweise. Sie steht in enger Wechselbeziehung mit anderen Wissenschaften, insbesondere den Naturwissenschaften.
Im Folgenden werden Informationen zu Teilgebieten und zur Geschichte der Mathematik gegeben.

Artikel lesen

Hinweise zur Anwendung des Grafiktaschenrechners VOYAGE 200 beim Lösen von Aufgaben aus der Analysis

Ableitung, abschnittsweise definierte Funktion, Darstellung von Zahlenfolgen, Ermittlung von Grenzwerten, Funktionenschar, Funktionsuntersuchung, Gleichungen, Gleichungssysteme, grafische Darstellung von Funktionen, Integration, Koordinaten von Hoch- und Tiefpunkten, Nullstellen
Durch den Einsatz von grafikfähigen Taschenrechnern (GTR) lässt sich der Arbeits- und Zeitaufwand zum Lösen mathematischer Aufgaben wesentlich reduzieren. Die Lösung bestimmter Aufgaben wird auf diesem Wege überhaupt erst möglich. Dabei ist es für viele schultypische Aufgabenstellungen unerheblich, ob der GTR zusätzlich ein Computeralgebrasystem (CAS) besitzt oder nicht.
Obwohl die Rechnerbefehle und damit die Handhabung verschiedener Rechnertypen zum Teil recht unterschiedlich sind, lassen sich typische Arbeitsweisen durchaus an einem festgelegten Modell aufzeigen. Für die folgenden Beispiele wurde dafür der Grafiktaschenrechner (mit CAS) VOYAGE 200 ausgewählt.
Im Folgenden wird an zwölf Beispielskomplexen gezeigt, wie der VOYAGE 200 zur Lösung typischer Aufgabenstellungen aus der Analysis eingesetzt werden kann.
Grundsätzliche Vorgehensweisen werden dazu detailliert erläutert und durch 37 Schirmbildwiedergaben veranschaulicht.

7 Suchergebnisse

Fächer
  • Mathematik (7)
Klassen
  • 5. Klasse (1)
  • 6. Klasse (1)
  • 7. Klasse (1)
  • 8. Klasse (1)
  • 9. Klasse (1)
  • 10. Klasse (1)
  • Oberstufe/Abitur (6)
Ein Angebot von

Footer

  • Impressum
  • Sicherheit & Datenschutz
  • AGB
© Duden Learnattack GmbH, 2025