Direkt zum Inhalt

2 Suchergebnisse

Alle Filter zurücksetzen
Artikel lesen

Gruppen

Eine nichtleere Menge G von Elementen a, b, c, ... heißt Gruppe, wenn in ihr eine Operation ∘ erklärt ist, die folgenden Axiomen genügt:

  1. Die Operation ∘ ist assoziativ,
    d.h. für alle Elemente a ,     b ,     c ∈ G gilt a ∘ ( b ∘ c ) = ( a ∘ b ) ∘ c .
  2. Die Operation ∘ ist umkehrbar, d.h. zu beliebigen Elementen a ,     b ∈ G sind die Gleichungen a ∘ x = b und y ∘ a = b       ( mit x ∈ G und y ∈ G )   lösbar.

Man nennt G eine abelsche Gruppe, wenn zusätzlich noch gilt:

  1. Die Operation ∘ ist kommutativ, d.h. für alle a ,     b ∈ G gilt a ∘ b = b ∘ a .
Artikel lesen

Niels Henrik Abel

* 05. August 1802 Frindoe
† 06. April 1829 Froland

NIELS HENRIK ABEL gilt als Begründer der modernen Algebra. Er verfasste Arbeiten über die Lösbarkeit algebraischer Gleichungen sowie zur Theorie elliptischer Funktionen. Nach ihm benannt sind u.a. die abelschen Gruppen.

2 Suchergebnisse

Fächer
  • Mathematik (2)
Klassen
  • Oberstufe/Abitur (2)
Ein Angebot von

Footer

  • Impressum
  • Sicherheit & Datenschutz
  • AGB
© Duden Learnattack GmbH, 2025