Direkt zum Inhalt

1 Suchergebnis

Alle Filter zurücksetzen
Artikel lesen

Partielle Ableitungen

Für eine Funktion mit einer Gleichung y = f ( x ) , also für eine Funktion mit genau einer unabhängigen Variablen x, ist die erste Ableitung y ' = f ' ( x 0 ) an einer Stelle x 0 erklärt durch den Grenzwert des Differenzenquotienten an dieser Stelle:
f ' ( x 0 ) = lim h   →   0 f ( x 0 + h ) − f ( x 0 ) h

Interpretiert man diesen Grenzwert geometrisch, so gibt er den Anstieg der Tangente an den Graphen von f im Punkte P 0 ( x 0 ;     f ( x 0 ) ) an.

Es sei nun z = f ( x ,     y ) die Gleichung einer Funktion f mit zwei unabhängigen Variablen x und y. Betrachtet man diese Funktion für ein konstantes y = y 0 , so erhält man eine Funktion z = f ( x ,     y 0 ) mit nunmehr nur einer unabhängigen Variablen x, für die man wie oben angegeben den Grenzwert des Differenzenquotienten an einer Stelle x 0 aufstellen kann. Existiert dieser Grenzwert, so nennt man ihn die partielle Ableitung erster Ordnung der Ausgangsfunktion z = f ( x ,     y ) nach x an der Stelle ( x 0 ;     y 0 ) und schreibt:
f x ( x 0 ;     y 0 ) = lim h   →   0 f ( x 0 + h ,     y 0 ) − f ( x 0 ,     y 0 ) h

1 Suchergebnis

Fächer
  • Mathematik (1)
Klassen
  • Oberstufe/Abitur (1)
Ein Angebot von

Footer

  • Impressum
  • Sicherheit & Datenschutz
  • AGB
© Duden Learnattack GmbH, 2025