Direkt zum Inhalt

3 Suchergebnisse

Alle Filter zurücksetzen
Artikel lesen

Drei-Sigma-Regel

Wählt man in der tschebyschewschen Ungleichung P ( |   X − E X   | ≥ α ) ≤ 1 α 2 ⋅ D 2 X für den Parameter α Vielfache der Standardabweichung σ = D X = E ( X − E X ) 2 , setzt man also α = n ⋅ σ , so erhält man:
  P ( |   X − E X   | ≥ n ⋅ σ ) ≤ 1 ( n ⋅ σ ) 2 ⋅ σ 2 = 1 n 2

Die Wahrscheinlichkeit, dass X einen Wert annimmt, der von EX um mindestens das n-fache der Standardabweichung σ abweicht, ist folglich höchstens 1 n 2 .
Für die Spezialfälle n = 1 ;       2 ;       3 ergibt sich dann Folgendes:
  P ( |   X − E X   | ≥ σ ) ≤ 1   P ( |   X − E X   | ≥ 2 σ ) ≤ 0,25   P ( |   X − E X   | ≥ 3 σ ) ≤ 0, 1 ¯

Diese aus der tschebyschewschen Ungleichung gewonnenen Aussagen werden als σ - Re g e l oder 3 σ - Re g e l bezeichnet.

Artikel lesen

Empirisches Gesetz der großen Zahlen

Das empirisches Gesetz der großen Zahlen, welches JAKOB BERNOULLI (1655 bis 1705) als „theorema aureum“ (goldenen Satz) bezeichnet hat, lautet folgendermaßen:

  • Ist A ein Ereignis eines Zufallsexperiments, so stabilisieren sich bei einer hinreichend großen Anzahl n von Durchführungen dieses Experiments die relativen Häufigkeiten h n ( A ) .
Artikel lesen

Pafnuti Lwowitsch Tschebyschew

* 04. Mai 1821 Okatovo (Russland)
† 26. November 1894 St. Petersburg

PAFNUTI LWOWITSCH TSCHEBYSCHEW war einer der bedeutendsten russischen Mathematiker des 19. Jahrhunderts. Er gilt als Begründer der sogenannten Petersburger mathematischen Schule.
Arbeitsschwerpunkte TSCHEBYSCHEWS waren u.a. wahrscheinlichkeitstheoretische Untersuchungen sowie die Approximation (näherungsweise Darstellung) von Funktionen.

3 Suchergebnisse

Fächer
  • Mathematik (3)
Klassen
  • Oberstufe/Abitur (3)
Ein Angebot von

Footer

  • Impressum
  • Sicherheit & Datenschutz
  • AGB
© Duden Learnattack GmbH, 2025