Direkt zum Inhalt

8 Suchergebnisse

Alle Filter zurücksetzen
Artikel lesen

Codierung mit Matrizen

Mithilfe von Matrizen und deren Multiplikation können Nachrichten verschlüsselt werden.
Die Verschlüsselung erfolgt mithilfe einer Codierungsmatrix, die Entschlüsselung mit der dazu inversen Matrix.

Artikel lesen

Gruppen

Eine nichtleere Menge G von Elementen a, b, c, ... heißt Gruppe, wenn in ihr eine Operation ∘ erklärt ist, die folgenden Axiomen genügt:

  1. Die Operation ∘ ist assoziativ,
    d.h. für alle Elemente a ,     b ,     c ∈ G gilt a ∘ ( b ∘ c ) = ( a ∘ b ) ∘ c .
  2. Die Operation ∘ ist umkehrbar, d.h. zu beliebigen Elementen a ,     b ∈ G sind die Gleichungen a ∘ x = b und y ∘ a = b       ( mit x ∈ G und y ∈ G )   lösbar.

Man nennt G eine abelsche Gruppe, wenn zusätzlich noch gilt:

  1. Die Operation ∘ ist kommutativ, d.h. für alle a ,     b ∈ G gilt a ∘ b = b ∘ a .
Artikel lesen

Körper

Ein Körper ist ein kommutativer Ring, in dem die vom Nullelement verschiedenen Elemente eine Gruppe bilden, d.h., ein Körper hat ein Einselement und zu jedem Element a ≠ 0 aus K ein inverses Element.
Beispiele für Körper sind die rationalen, die reellen und die komplexen Zahlen.
Von besonderem Interesse ist die Untersuchung von sogenannten Restklassenkörpern.

Artikel lesen

Der Satz von Moivre

Der Satz von MOIVRE – benannt nach ABRAHAM DE MOIVRE (1667 bis 1754) – sagt aus, wie die Multiplikation bzw. Division und das Potenzieren von in trigonometrischer Form vorliegenden komplexen Zahlen auf einfache Operationen für die Winkel und die Beträge der komplexen Zahlen zurückgeführt werden können.

Artikel lesen

Restklassen

Jede positive ganze Zahl m gestattet es, in der Menge ℤ der ganzen Zahlen eine Relation der folgenden Art zu definieren:

Artikel lesen

Verknüpfen von Funktionen

Funktionen mit einem gemeinsamen Definitionsbereich können addiert, subtrahiert und multipliziert werden, d.h., es gilt:
  ( f + g ) ( x ) = f ( x ) + g ( x ) ( f − g ) ( x ) = f ( x ) − g ( x ) ( f ⋅ g ) ( x ) = f ( x ) ⋅ g ( x )

Wenn g ( x ) ≠ 0 ist, dann lässt sich auch der Kehrwert ( 1 g ) ( x ) = 1 g ( x ) und der Quotient ( f g ) ( x ) = f ( x ) g ( x ) bilden.

Artikel lesen

Ringe

Der Begriff des Ringes baut auf dem Begriff Gruppe auf und gehört ebenso wie dieser zu den grundlegenden Strukturbegriffen der Algebra. Während bei der Gruppe nur eine zwischen den Elementen erklärte Verknüpfung betrachtet wird, werden beim Ring gleichzeitig zwei Verknüpfungen in ihrem gegenseitigen Zusammenhang betrachtet.
Die Addition und die Multiplikation sind in den Zahlenbereichen ℕ ,       ℤ ,       ℚ ,       ℝ und ℂ Operationen, die distributiv miteinander verknüpft sind.

Ein Beispiel für endliche Ringe sind Restklassenringe.

Artikel lesen

Rechen mit dem logarithmischen Rechenstab

Der logarithmische Rechenstab in seiner Grundausführung wird vornehmlich zum Multiplizieren, Dividieren, Potenzieren, Radizieren und zum Rechnen mit Winkelfunktionswerten benutzt. Durch Anwenden der Logarithmengesetze werden die Rechenoperationen auf Addition bzw. Subtraktion von Strecken zurückgeführt.

8 Suchergebnisse

Fächer
  • Mathematik (8)
Klassen
  • 5. Klasse (7)
  • 6. Klasse (7)
  • 7. Klasse (7)
  • 8. Klasse (7)
  • 9. Klasse (7)
  • 10. Klasse (7)
  • Oberstufe/Abitur (8)
Ein Angebot von

Footer

  • Impressum
  • Sicherheit & Datenschutz
  • AGB
© Duden Learnattack GmbH, 2025