Direkt zum Inhalt

8 Suchergebnisse

Alle Filter zurücksetzen
Artikel lesen

Volumeneinheiten

Die Basiseinheit für das Volumen (den Rauminhalt) ist der Kubikmeter ( m 3 ).
Für größere oder kleinere Volumen (Rauminhalte) verwendet man Einheiten, die durch Vervielfachen mit Potenzen von 1000 = 10 3 aus dem Kubikmeter abgeleitet sind, wie z. B. Kubikdezimeter
( d m 3 ), Kubikzentimeter ( c m 3 ) oder Kubikmillimeter ( m m 3 ) .

Artikel lesen

Volumen von Körpern

Das Volumen (der Rauminhalt) gibt an, wie viel Raum ein Körper einnimmt.

Formelzeichen:
Einheiten:
V
1 Kubikmeter (1 m 3 )
1 Liter (1 l)

Spezielle Volumeneinheiten sind ein Barrel (1 barrel) und eine Bruttoregistertonne (1 BRT).

Artikel lesen

Volumen von Körpern

Das Volumen (der Rauminhalt) gibt an, wie viel Raum eine Stoffprobe oder Stoffportion einnimmt.

Formelzeichen:
Einheiten:
V
1 Kubikmeter (1 m 3 )
1 Liter (1 l)

Spezielle Volumeneinheiten sind ein Barrel (1 barrel) und eine Bruttoregistertonne (1 BRT).

Artikel lesen

Geometrische Körper

Ein geometrischer Körper ist die Menge aller Punkte, Geraden und Ebenen des dreidimensionalen Raumes, die innerhalb eines vollständig abgeschlossenen Teils dieses Raumes liegen.
Die Summe der Flächeninhalte der Begrenzungsflächen bildet den Oberflächeninhalt, der vollständig umschlossene Raum das Volumen des Körpers.

Artikel lesen

Prinzip des Cavalieri

FRANCESCO BONAVENTURA CAVALIERI, ein Schüler GALILEIs, veröffentlichte 1629 das auf seinen Überlegungen beruhende Prinzip des Volumenvergleichs zweier Körper.

Artikel lesen

Bonaventura Cavalieri

* 1598 Mailand
† 30. November 1647 Bologna

BONAVENTURA FRANCESCO CAVALIERI lehrte in Bologna und arbeitete vor allem auf dem Gebiet der Geometrie. Seine Berechnungen zu Flächeninhalten und Volumina, insbesondere das Prinzip der Indivisiblen, bereiteten die Entwicklung von Methoden der Infinitesimalrechnung vor.

Artikel lesen

Geschichte der Analysis

Die Analysis (oder auch Infinitesimalrechnung) beschäftigt sich im Wesentlichen mit der Differenzial- und Integralrechnung.
Ausgangspunkt für die Integralrechnung war das schon in der Antike betrachtete Problem der Bestimmung des Inhalts von Flächen und Körpern, wie etwa von Rotationskörpern.
Die Differenzialrechnung hat ihre Wurzeln dagegen im Tangentenproblem, mit dem sich Mathematiker im 17. Jahrhundert intensiver beschäftigten.
Im 18. Jahrhundert wurde der Zusammenhang zwischen dem Differenzieren und Integrieren erkannt und im Hauptsatz der Differenzial- und Integralrechnung formuliert. Hierzu trugen wesentlich ISAAC NEWTON und GOTTFRIED WILHELM LEIBNIZ bei.

Artikel lesen

Volumen von Körpern

Das Volumen (der Rauminhalt) gibt an, wie viel Raum ein Körper einnimmt.

Formelzeichen:
Einheiten:
V
1 Kubikmeter (1 m 3 )
1 Liter (1 l)


Spezielle Volumeneinheiten sind ein Barrel (1 barrel) und eine Bruttoregistertonne (1 BRT). Das Volumen kann berechnet, mit Messzylindern oder Durchflusszählern direkt gemessen oder experimentell ermittelt werden.

8 Suchergebnisse

Fächer
  • Chemie (1)
  • Mathematik (5)
  • Physik (2)
Klassen
  • 5. Klasse (5)
  • 6. Klasse (5)
  • 7. Klasse (5)
  • 8. Klasse (5)
  • 9. Klasse (5)
  • 10. Klasse (5)
  • Oberstufe/Abitur (3)
Ein Angebot von

Footer

  • Impressum
  • Sicherheit & Datenschutz
  • AGB
© Duden Learnattack GmbH, 2025