Direkt zum Inhalt

1 Suchergebnis

Alle Filter zurücksetzen
Artikel lesen

Basen und Dimension von Unterräumen

Sind a 1 → ,       a 2 → ,       ...,       a m → Vektoren eines Vektorraumes V, so ist die Menge aller Linearkombinationen dieser Vektoren bezüglich der Addition und der Vervielfachung in V wieder ein Vektorraum, d.h. ein Unterraum von V. Die Menge { a 1 → ,     a 2 → ,     ...,     a m → } wird ein Erzeugendensystem des Unterraumes U genannt.
Von besonderem Interesse ist ein minimales Erzeugendensystem für U, d.h. ein System mit kleinstmöglicher Zahl m, welches dann Basis von U genannt wird.

Für die folgenden Betrachtungen werden die Begriffe der linearen Unabhängigkeit bzw. der linearen Abhängigkeit von Vektoren benötigt.

1 Suchergebnis

Fächer
  • Mathematik (1)
Klassen
  • Oberstufe/Abitur (1)
Ein Angebot von

Footer

  • Impressum
  • Sicherheit & Datenschutz
  • AGB
© Duden Learnattack GmbH, 2025