Direkt zum Inhalt

Pfadnavigation

  1. Startseite
  2. Chemie Abitur
  3. 3 Atombau und Periodensystem
  4. 3.2 Das Periodensystem der Elemente
  5. 3.2.2 Ordnungsprinzip im Periodensystem
  6. Iod

Iod

Iod ist ein seltenes, weniger reaktives Element der 7. Hauptgruppe (Halogene). Es bildet metallisch-glänzende, schuppenförmige Kristalle, die leicht sublimieren. Es werden Verbindungen mit den Oxidationsstufen -I (Iodide) bis +VII (Periodate, IO4 ) gebildet. Gewonnen wird Iod hauptsächlich aus Ablaugen der Chilesalpeter-Produktion (enthalten IO3 ) durch Reduktion mit
SO2. Iod ist ein für den Menschen wichtiges Spurenelement und Bestandteil der Schilddrüsenhormone. Iod und seine Verbindungen sind u. a. in Desinfektionsmitteln, Katalysatoren und Futtermittelzusätzen enthalten.

Schule wird easy mit KI-Tutor Kim und Duden Learnattack

  • Kim hat in Deutsch, Mathe, Englisch und 6 weiteren Schulfächern immer eine von Lehrkräften geprüfte Erklärung, Video oder Übung parat.
  • 24/7 auf Learnattack.de und WhatsApp mit Bildupload und Sprachnachrichten verfügbar. Ideal, um bei den Hausaufgaben und beim Lernen von Fremdsprachen zu unterstützen.
  • Viel günstiger als andere Nachhilfe und schützt deine Daten.
Jetzt 30 Tage risikofrei testen
Your browser does not support the video tag.

Eigenschaften des Elements

Einordnung in das Periodensystem
der Elemente und Eigenschaften
Atombau
Ordnungszahl: 5353 Protonen
53 Elektronen
5. Periode5 besetzte Elektronenschalen
VII. Hauptgruppe7 Außenelektronen
Elektronenkonfiguration im GrundzustandKr 5s24d1 05p5
Elektronegativität2,5
Ionisierungsenergie in eV10,451
häufigste OxidationszahlenVII, V, III, I, -I
Atommasse des Elements in u126,90
Atomradius in 10- 1 0m1,33
Ionenradius in 10- 1 0m2,16 (-1)
Aggregatzustand im Normalzustandfest

Stoffkonstanten und Häufigkeit des Vorkommens in der Natur

Dichte in Bild bei 25 °C4,94
Härte nach Mohs und Brinell 
Schallgeschwindigkeit in Bild 
Schmelztemperatur in °C bei 3 MPa114
spezifische Schmelzwärme in Bild120,33
Siedetemperatur in °C183
spezifische Verdampfungswärme in Bild328,36
Standardentropie S0 in Bild116
Wärmeleitfähigkeit in Bild bei 27 °C0,449
spezifische Wärmekapazität in Bild bei 0 °C0,2156
Volumenausdehnungskoeffizient in 10- 3 Bild 
spez. elektrischer Widerstand in Bild0,0137
Anteil in der Erdhülle in % (Atmosphäre,
Wasser, Erdkruste bis 10 km Tiefe)
0,000 006

Bild
grau glänzende Iod-Kristalle

Bild
Iod-Dämpfe sind violett.

Isotope des Elements

In der Natur kommt Iod nur in Form eines stabilen Isotops vor. Es ist also ein anisotopes Element. Künstlich erzeugt wurden 33 radioaktive Isotope, nur einge davon sind in der nachfolgenden Tabelle aufgeführt.

Ordnungszahl ZMassenzahl AAtommasse in uHäufigkeit
in %
Art der Strahlung
und Energie in MeV
Halbwertszeit
53127126,904 470100 %  
 128127,905 838künstlichβ Bild: 2,125,0 min.
 129128,904 987künstlichβ Bild: 0,21,6 · 107 a
 130129,906künstlichβ Bild: 1,012,5 h
 131130,906 127künstlichβ Bild: 0,68,08 d
 132131,907 981künstlichβ Bild: 1,52,3 h
 133132,907künstlichβ Bild: 1,221 h
 134133,909künstlichβ Bild: 2,553 min.
 135134,910künstlichβ Bild: 1,56,7 d

Energieniveauschema

Bild

Weitere Eigenschaften

Iod liegt bei Normaltemperatur als fester Stoff in Form von grauen, glänzenden Kristallen vor. Bei Erwärmung gehen diese sofort in den gasförmigen Zustand über und werden wieder fest bei Abkühlung. Die Dämpfe sind intensiv violett gefärbt und riechen stechend. In Wasser ist Iod kaum löslich, besser löst es sich in organischen Lösungsmitteln. Iod ist etwas reaktionsträger als Chlor und Brom, ähnelt diesen ansonsten in den chemischen Eigenschaften sehr.

Entdeckung

Bei seinen Experimenten mit der Asche von Seetang entdeckte der französische Chemiker BERNARD COURTOIS (1777-1838) einen neuen Stoff. Ihm fielen die violetten Dämpfe auf. Bei Abkühlung der Dämpfe erhielt der Chemiker graue glänzende Kristalle. DAVY und GAY-LUSSAC erkannten schließlich, dass es sich um ein neues Element handelt. Die Benennung des Elements bezieht sich auf die violetten Dämpfe. Nach ihnen leitet sich «Iod» vom griechische «iodes» für «veilchenartig» her.

Vorkommen/Herstellung

Iod ist auf der Erde nicht sehr häufig (70. Stelle der Elementhäufigkeit) und tritt nie in reiner Form auf. Seine Verbindungen sind sowohl in der Erdkruste, als auch gelöst im Meerwasser zu finden. Abbauwürdige Vorkommen sind meist Begleitbestandteile anderer Salze, so z. B. in den Chilesalpeter- und Natronsalpeterlagerstätten in Chile und Peru. Das Element Iod ist für die meisten Organismen essenziell, das heißt sie müssen Iod-Ionen aufnehmen, um lebenswichtige Verbindungen aufzubauen. Der menschliche Organismus benötigt beispielsweise zur Produktion der Schilddrüsenhormone Iod-Ionen. Einige Meeresorganismen reichern Iodverbindungen an. Dazu gehören beispielsweise Meeresalgen, u. a. der Seetang. Hauptsächlich wird Iod aus den Rückständen gewonnen, die bei der Produktion von Natriumnitrat aus Chilesalpeter anfallen. Außerdem werden die Solen, die im Zusammenhang mit Erdöllagerstätten stehen, mit Chlor behandelt, um das darin enthaltene Iod zu gewinnen. Nicht zuletzt nutzt man für die Herstellung von Iod aus den Verbindungen die Makroalgen, die Iodverbindungen im Organismus angereichert haben. Dazu werden die Pflanzen verascht und die Asche anschließend behandelt.

Verwendung

Reines Iod dient der Herstellung von Medikamenten, Röntgenkontrastmitteln und Desinfektionsmitteln (Iod-Tinktur). Das radioaktive Isotop kommt in der Radioiodtherapie zum Einsatz. Iod wird außerdem für die Füllung von Halogenlampen benötigt. Eine Iod-Kaliumiodidlösung wird als Nachweismittel für Stärke genutzt. Die Iodmoleküle werden in das spiralförmig gewundene Stärkemolekül eingelagert und bilden eine Einschlussverbindung. Diese ist durch eine charakteristische Blaufärbung zu erkennen. In der Metallurgie wird Iod zur Gewinnung extrem reiner Metalle verwendet.

Wichtige Verbindungen

  • Diiodpentoxid (I2O5 - in Prüfröhrchen für Kohlenstoffmonooxid enthalten)
  • Kaliumiodid (KI - Medizin)
  • Thyroxin (Tetraiodthyronin; T4 und Triiodthyronin T3 - Schilddrüsenhormone)

Bau

Die zweiatomigen Moleküle lagern sich einem Schichtengitter zusammen.

Lernhelfer (Duden Learnattack GmbH): "Iod." In: Lernhelfer (Duden Learnattack GmbH). URL: http://www.lernhelfer.de/index.php/schuelerlexikon/chemie-abitur/artikel/iod (Abgerufen: 20. May 2025, 13:01 UTC)

Suche nach passenden Schlagwörtern

  • Nichtmetalle
  • Feststoffe
  • Periodensystem der Elemente
  • PSE
  • Gase
  • Element
  • Iod
Jetzt durchstarten

Lernblockade und Hausaufgabenstress?

Entspannt durch die Schule mit KI-Tutor Kim und Duden Learnattack.

  • Kim hat in Deutsch, Mathe, Englisch und 6 weiteren Schulfächern immer eine von Lehrkräften geprüfte Erklärung, Video oder Übung parat.
  • 24/7 auf Learnattack.de und WhatsApp mit Bildupload und Sprachnachrichten verfügbar. Ideal, um bei den Hausaufgaben und beim Lernen von Fremdsprachen zu unterstützen.
  • Viel günstiger als andere Nachhilfe und schützt deine Daten.

Verwandte Artikel

Die Elemente der 1. Hauptgruppe – Eigenschaften und wichtige Verbindungen der Alkalimetalle

Zur 1. Hauptgruppe des Periodensystems gehören die Elemente Wasserstoff, Lithium, Natrium, Kalium, Rubidium und Caesium. Wasserstoff, der in der ersten Periode steht, ist ein typisches Nichtmetall. Die übrigen Elemente der 1. Hauptgruppe werden auch Alkalimetalle genannt, sie sind weiche, reaktionsfähige Metalle.

Die Alkalimetalle geben leicht ihr Valenzelektron ab und sind daher sehr reaktiv. Sie kommen in der Natur nur in gebundener Form vor. Wasserstoff ist das häufigste Element im Universum.

Technische Varianten der Chloralkali-Elektrolyse

Natronlauge und Chlor werden als Grundprodukte der chemischen Industrie heute nahezu ausschließlich elektrolytisch hergestellt. Für die technische Durchführung dieser Elektrolyse werden drei Verfahren angewendet: das Amalgam-, das Diaphragma- und das Membranverfahren. Im Wesentlichen unterscheiden sich die Verfahren im Energieverbrauch und der Art der Trennung zwischen Anoden- und Katodenraum. Obwohl das Membranverfahren das wirtschaftlichste und ökologisch nachhaltigste Verfahren ist, arbeiten noch ca. 50 % der Anlagen in Deutschland nach dem Amalgam-Verfahren.

Entwicklung der chemischen Industrie (1851-1900)

In der zweiten Hälfte des 19. Jahrhunderts wurde die klassische Chemie vollendet. Den Anorganikern gelang die Systematisierung der Elemente im Periodensystem. In der organischen Chemie erkannte man die Vierwertigkeit des Kohlenstoffs und die daraus resultierende tetraedrische Konfiguration des Kohlenstoffatoms. Die verschiedenen Formen der Isomerie und ihre Bedeutung wurden nachgewiesen und richtig interpretiert, darunter auch das Schlüssel-Schloss-Prinzip enzymatischer Reaktionen. Die Physikochemiker formulierten die Hauptsätze der Thermodynamik und begründeten die chemische Kinetik.
Die fundamentalen naturwissenschaftlichen Entdeckungen führten auch dazu, dass großtechnische Prozesse immer besser beherrscht wurden und riesige Gewinne abwarfen. Die Verfahren zur Herstellung von Stahl und Schwefelsäure wurden revolutioniert. Eine besondere Entwicklung nahm die organische Synthesechemie durch die erfolgreiche technische Realisierung der Synthesen von Farbstoffen wie Indigo oder Arzneistoffen wie Aspirin. Dadurch bedingt erfolgte die Gründung vieler großer Chemieunternehmen wie der BASF und der BAYER AG, die heute noch führende Unternehmen in ihrer Branche sind.

Verwendung von Chlor und Natronlauge

Chlor und Natronlauge entstehen als Koppelprodukte bei der Chloralkali-Elektrolyse. Sie stellen wichtige Produkte für die chemische Industrie dar. Chlor wird insbesondere in der organisch-chemischen Industrie zur Herstellung verschiedenster, auch chlorfreier Produkte verwendet. Natronlauge ist als Neutralisationsmittel und bei der Aluminiumherstellung von großer Bedeutung.

Carl Wilhelm Scheele

* 09.12.1742 in Stralsund,
† 21.05.1786 in Köping

CARL WILHELM SCHEELE wurde am 9. Dezember 1742 im damals schwedischen Stralsund geboren. Nach seiner Ausbildung war er sein Leben lang als Apotheker tätig. Ab 1776 besaß er eine eigenen Apotheke in Köping. Seine gesamte Freizeit widmete er jedoch der Chemie. Große Verdienste waren die Entdeckung einer Vielzahl von Elementen sowie die Erforschung einer Reihe von Substanzen. Wahre Pionierleistungen vollbrachte er auf dem Gebiet der anorganischen Chemie, wo er die Anzahl der bisher bekannten Säuren auf 13 erhöhte. Neben verschiedenen anderen Arbeiten führte er viele Untersuchungen durch, die vor allem für die analytische Chemie von Bedeutung waren. Bemerkenswert sind auch seine Vorarbeiten für chemisch-technische Prozesse wie die Fotografie.

Ein Angebot von

Footer

  • Impressum
  • Sicherheit & Datenschutz
  • AGB
© Duden Learnattack GmbH, 2025