Direkt zum Inhalt

Pfadnavigation

  1. Startseite
  2. Chemie
  3. 2 Struktur und Eigenschaften von Stoffen
  4. 2.5 Säuren und Basen
  5. 2.5.1 Der Säure-Base-Begriff
  6. Geschichte des Säurebegriffs

Geschichte des Säurebegriffs

Säuren sind dem Menschen schon lange bekannt. Schon 2000 v. Chr. verwendete man Essig zum Würzen von Speisen. Es ist zwar unwahrscheinlich, dass diese Stoffe schon damals als Säuren angesprochen wurden, aber ihr saurer Charakter war bereits bekannt und geschätzt.
Die erste Definition der Säuren war wohl die nach dem Geschmack. Unsere Zunge spricht auf saure Stoffe an, das heißt etwas schmeckt „sauer“. Da man aber im chemischen Labor keine Stoffe kosten kann, ohne die Gesundheit zu gefährden, wurden Messgeräte entwickelt und der Begriff „Säure“ definiert. Die Definitionskriterien wandelten sich dabei im Laufe der Zeit.

Schule wird easy mit KI-Tutor Kim und Duden Learnattack

  • Kim hat in Deutsch, Mathe, Englisch und 6 weiteren Schulfächern immer eine von Lehrkräften geprüfte Erklärung, Video oder Übung parat.
  • 24/7 auf Learnattack.de und WhatsApp mit Bildupload und Sprachnachrichten verfügbar. Ideal, um bei den Hausaufgaben und beim Lernen von Fremdsprachen zu unterstützen.
  • Viel günstiger als andere Nachhilfe und schützt deine Daten.
Jetzt 30 Tage risikofrei testen
Your browser does not support the video tag.

Geschichte einzelner Säuren

Säuren sind dem Menschen schon lange bekannt. Schon 2000 v. Chr. verwendete man Essig zum Würzen von Speisen. Die Griechen und Römer nutzten die erfrischende Wirkung von Zitrusfrüchten. Diese Erfrischung kommt unter anderem von der in den Früchten enthaltenen Zitronensäure. Diese Stoffe waren zwar in der Antike nicht unter dem Namen „ Säuren “ bekannt, aber ihr saurer Charakter und Geschmack wurde sehr geschätzt.

Im 13. Jahrhundert wurden die Salpeter- und die Schwefelsäure erstmals in byzantinischen Schriften erwähnt. Ihre Gewinnung wurde 1250 erstmals durch den Alchimisten GEBER beschrieben. Erstere gewinnt er durch „Destillation” aus den Salzen Alaun und Vitriol, die zweite Mineralsäure, indem er dem Salzgemisch noch Salpeter (Kaliumnitrat) zusetzt.

Die in der Renaissance noch als „scharfe Wässer“ bezeichneten Säuren bekamen eine immer stärkere wirtschaftliche Bedeutung. Der wirtschaftliche Einsatz der Schwefelsäure begann erst Mitte des 18. Jahrhunderts. Ihre Haupteinsatzgebiete waren die Stofffärberei und die Bleicherei.

Die Salpetersäure dagegen wurde schon früher zu gewerblichen Zwecken verwendet. Sie fand hauptsächlich in der Edelmetallverarbeitung ihren Einsatz. Zum Beispiel in Venedig wurde sie schon im 15. Jahrhundert zur Scheidung von Gold und Silber verwendet.

Die Salzsäure wurde im 16. Jahrhundert entdeckt und GLAUBER beschrieb erstmals ausführlich ihre Herstellung. GLAUBER empfahl Salzsäure zu verschiedenen Zwecken, unter anderem zum Würzen von Speisen, aber ihre große wirtschaftliche Bedeutung bekam sie erst im 19. Jahrhundert.

Die Entwicklung des Säurebegriffs

Doch wann sprach man eigentlich von „Säuren“? Und was ist genau mit diesem Begriff gemeint?
Die erste Definition entstand wohl nach dem Geschmack. Wir können „sauer“ schmecken. Da man aber im chemischen Labor keine Stoffe kosten kann, ohne die Gesundheit zu gefährden, wurden Messgeräte und Indikatoren entwickelt und der Begriff „Säure“ definiert. Die Definitionskriterien wandelten sich dabei im Laufe der Zeit.

Der englische Forscher ROBERT BOYLE (1627-1691) unterschied als erster Säuren und Basen. Er stellte fest, dass Säuren den Pflanzenfarbstoff Lackmus rot färben und Marmor lösen. Basen hingegen färben Lackmus blau und bilden beim Mischen mit sauren Lösungen Salze. Die Begriffe „Säure“ und „ Base “ für jeweils eine Stoffklasse wurden von R. BOYLE im 17. Jh. eingeführt.

Der Franzose ANTOINE DE LAVOISIER erkannte, dass beim Lösen vieler Oxide (z. B. Schwefeloxide) in Wasser saure Lösungen entstehen. Daraus schlussfolgerte er, dass Sauerstoff als Bestandteil der Oxide auch in allen Säuren enthalten sein müsse.

Diese Annahme wurde durch JUSTUS VON LIEBIG widerlegt, der mit der von ihm entwickelten Elementaranalyse nachwies, dass es Säuren gibt, die keinen Sauerstoff enthalten. Nach LIEBIG sind Säuren Substanzen, die Wasserstoff enthalten, der durch Metalle ersetzt werden kann. Es gibt jedoch einige Stoffe (Methan, Metallhydride), die Wasserstoff enthalten und überhaupt nicht sauer reagieren. Außerdem konnte LIEBIG kein allgemeines Merkmal für Basen formulieren.

Definition nach ARRHENIUS

Die erste wissenschaftlich geschlossene Säure-Base-Theorie entwickelte der schwedische Chemiker SVANTE ARRHENIUS . Dieser verstand in seiner 1887 aufgestellten Definition unter einer Säure immer noch einen Stoff, der sauer schmeckt, aber auch einen Stoff, der in wässriger Lösung Wasserstoff-Ionen bzw. Protonen ( = H + ) bildet.

In Wasser dissoziiert eine Säure demnach in Wasserstoff-Ionen und Säurerest-Ionen nach folgender allgemeinen Gleichung:

HA       → H 2 O      H +   +     A -

HA steht in diesem Fall ganz allgemein für eine ARRHENIUS-Säure und A − ist das bei der Dissoziation entstehende Säurerest-Ion.

Für die Salpetersäure lautet die Gleichung:

HNO 3     → H 2 O        H +   +   NO 3 -

Salpetersäure dissoziiert in Wasser in Wasserstoff-Ionen und Nitrat-Ionen = Säurerest-Ionen.

Eine Base ist nach ARRHENIUS ein Stoff, der seifig oder laugenhaft schmeckt und in Wasser Hydroxid-Ionen bildet.

Allgemein gilt für Metallhydroxide:

MOH     → H 2 O     M +   +     OH -

Beispiel Natriumhydroxid:

N a O H     → H 2 O     N a + +   O H −

Diese Definition musste aber erweitert werden, da sie einen entscheidenden Nachteil hatte. ARRHENIUS beschränkte sich in seiner Definition nur auf wässrige Lösungen. Für das Entstehen einer Säure oder Base war also immer Wasser notwendig. Es waren aber auch schon Säure-Base-Reaktionen bekannt, die nicht in wässrigen Lösungen abliefen.

Außerdem erkannte man, dass Basen wie Ammoniak nicht unbedingt Hydroxid-Ionen enthalten müssen und dass freie Protonen (Wasserstoff-Ionen) in wässriger Lösung nicht existieren können.

  • JOHANNES NICOLAUS BRÖNSTED (1879-1947)

Definition nach BRÖNSTED

Unabhängig voneinander entwickelten der dänische Chemiker Johannes BRÖNSTED und der Engländer THOMAS LOWRY im Jahre 1923 eine neue Definition des Säure-Base-Begriffs. Nach BRÖNSTED ist eine Säure ein Stoff oder eine Verbindung, die Protonen ( = H + ) sowohl in wässrigen als auch in nicht wässrigen Systemen abgeben kann. Solch ein Stoff wird als Protonendonator (lat. donare = spenden) bezeichnet.

Allgemein reagiert eine Säure mit Wasser nach der Gleichung:

H A   +   H 2 O   ⇄   A − +   H 3 O +

Für das Beispiel Salpetersäure ergibt sich daraus:

H N O 3   +     H 2 O     ⇄     H 3 O + +     N O 3 -

Eine BRÖNSTED-Base dagegen ist eine Verbindung, die Protonen aufnehmen kann. Deshalb wird ein solcher Stoff auch als Protonenakzeptor bezeichnet (lat. accipere = annehmen).

Nach dieser Definition wird auch ein Säurerest-Ion als Base betrachtet:

A − +     H 2 O   ⇄   H A     +     O H −

So reagiert Ammoniak im wässrigen und im nicht wässrigen System als Base, obwohl es keine Hydroxid-Ionen enthält:

wässriges System:          NH 3      +     H 2 O   ⇄    NH 4 +    + H O -       nicht wässriges System:        NH 3      +     H +   ⇄    NH 4 +

Eine Grundvoraussetzung der BRÖNSTED-LOWRY-Theorie ist das Vorhandensein eines Teilchens, das das abgegebene Proton wieder aufnimmt, da freie Protonen nicht beständig sind. Säure-Base-Reaktionen sind nach BRÖNSTED also Reaktionen mit Protonenübergang.

Ein häufiger Protonenakzeptor ist das Wassermolekül, das dann zu einem Oxonium-Ion ( H 3 O + ) wird. Es können jedoch auch Säure-Base-Reaktionen erklärt werden, die in nicht wässrigen Systemen verlaufen, zum Beispiel in Ammoniak als Lösungsmittel.

Vorteile der Säure-Base-Definition nach BRÖNSTED

  1. Die BRÖNSTED-LOWRY-Theorie ist nicht mehr an das Vorliegen wässriger Lösungen gebunden.
     
  2. Als Basen werden nicht nur Hydroxide sondern alle Protonenakzeptoren betrachtet.
     
  3. Zu jeder Säure gehört eine korrespondierende Base und umgekehrt. Diese liegen in einem chemischen Gleichgewicht vor, aus dessen Lage die Stärke der Säuren und Basen bestimmt werden kann.

Säure-Base-Definition nach LEWIS

Der amerikanische Chemiker GILBERT N. LEWIS entwickelte ein weiteres Säure-Base-Konzept. Er erweiterte den Säurebegriff auf alle Substanzen, die ein freies Elektronenpaar aufnehmen können. Deshalb werden LEWIS-Säuren auch als Elektronenpaarakzeptoren bezeichnet. Damit zählt LEWIS auch Verbindungen zu den Säuren, die selbst keine Protonen enthalten wie beispielsweise Metall-Kationen oder Verbindungen wie Aluminiumtrichlorid (AlCl3). Eine der wichtigsten LEWIS-Säuren ist das Proton ( =     H + ) .

Basen sind nach LEWIS dagegen Stoffe, die ein freies Elektronenpaar besitzen und dieses abgeben können oder zur Bildung einer Bindung zur Verfügung stellen. Sie werden auch Elektronenpaardonatoren genannt. Dazu zählt unter anderem Wasser, aber auch alle Anionen wie die Halogenid-Anionen.

Eines der bekanntesten Beispiele für eine LEWIS-Base ist Ammoniak. Das Stickstoffatom im Ammoniak besitzt drei Bindungen zu Wasserstoffatomen und hat dann noch zwei freie Außenelektronen in Form eines freien Elektronenpaares.

Die LEWIS-Theorie ist eine Erweiterung der BRÖNSTED-LOWRY-Theorie, die in der organischen Chemie sehr nützlich ist. So lässt sich beispielsweise der Ablauf einer nucleophilen Substitution an Aromaten mit  Aluminiumchlorid als Katalysator gut mittels der LEWIS-Theorie veranschaulichen. Nach LEWIS kann aber die Stärke von Säuren und Basen nicht quantitativ beschrieben werden. Außerdem werden Verbindungen wie Wasser oder Chlorwasserstoff nicht mehr als Säuren betrachtet, obwohl speziell letzterer eindeutig sauer reagiert. Das für viele naturwissenschaftliche Vorgänge anschaulichste Modell von Säuren und Basen ist deshalb nach wie vor die BRÖNSTED-LOWRY-Theorie.

Lernhelfer (Duden Learnattack GmbH): "Geschichte des Säurebegriffs." In: Lernhelfer (Duden Learnattack GmbH). URL: http://www.lernhelfer.de/index.php/schuelerlexikon/chemie/artikel/geschichte-des-saeurebegriffs (Abgerufen: 20. May 2025, 21:51 UTC)

Suche nach passenden Schlagwörtern

  • Video
  • Säure
  • Lewis
  • scharfe Wässer
  • Oxonium-Ion
  • Salpetersäure
  • Hydroxid-Ion
  • Salzsäure
  • Säurerestion
  • Base
  • Schwefelsäure
  • elektrophil
  • Geschichte
  • Protonenakzeptoren
  • Brönsted
  • Wasser
  • Protonendonatoren
  • Ammoniak
  • Elektronenpaarakzeptor
  • nukleophil
  • Elektronenpaardonator
  • Glauber
  • korrespondierendes Säure-Base-Paar
  • Autoprotolyse
  • ARRHENIUS
  • Robert Boyle
  • Agricola
Jetzt durchstarten

Lernblockade und Hausaufgabenstress?

Entspannt durch die Schule mit KI-Tutor Kim und Duden Learnattack.

  • Kim hat in Deutsch, Mathe, Englisch und 6 weiteren Schulfächern immer eine von Lehrkräften geprüfte Erklärung, Video oder Übung parat.
  • 24/7 auf Learnattack.de und WhatsApp mit Bildupload und Sprachnachrichten verfügbar. Ideal, um bei den Hausaufgaben und beim Lernen von Fremdsprachen zu unterstützen.
  • Viel günstiger als andere Nachhilfe und schützt deine Daten.

Verwandte Artikel

Abgasreinigung in der Industrie

Die Abgase von Kraftwerken enthalten als Haupbestandteile Kohlenstoffdioxid, Schwefeldioxid, Stickoxide und Staub. Um die Emission dieser Umweltschadstoffe zu reduzieren wurden verschiedene Verfahren zur Reinigung der industriellen Abgase entwickelt, die je nach Bedarf kombiniert eingesetzt werden können. Das DeNOx-Verfahren dient zur Beseitigung der Stickoxide (NO X ) und in der Rauchgasentschwefelung wird das Schwefeldioxid entfernt.
Zur Entfernung des Schwefeldioxides aus dem Abgas der Schwefelsäure-Herstellung wurde ein spezielles Verfahren entwickelt, um das SO 2 zurückzugewinnen und wieder dem Produktionskreislauf zuzuführen.

Proteine – Aufbau und Eigenschaften

Aminosäuren sind die Bausteine der Eiweiße. Aus nur 20 von ihnen werden alle Eiweiße gebildet, aus denen die Zellen aller Lebewesen, auch des Menschen, bestehen. Die Vielfalt der Eiweiße ist Grundlage für die unterschiedlichen Funktionen, die sie haben.

Organische Verbindungen mit funktionellen Gruppen – Überblick

Viele Organische Moleküle enthalten neben den Elemente Kohlenstoff und Wasserstoff auch noch andere Elemente. Am häufigsten sind dies Sauerstoff, Stickstoff und Schwefel sowie Halogene. Diese Elemente bestimmen maßgeblich die physikalischen und chemischen Eigenschaften der organischen Stoffe. Man bezeichnet sie als funktionelle Gruppen. Nach solchen strukturellen Merkmalen fasst man Stoffe zu Stoffgruppen zusammen.

Eiweiße als Multitalente mit vielen Funktionen in der Natur

Eiweiße (Proteine) sind kompliziert gebaute makromolekulare Verbindungen, die vorwiegend oder ausschließlich aus Aminosäuren aufgebaut sind. Würde man diese Makromoleküle durch chemische Reaktionen in ihre Bausteine zerlegen, kommt man zu einem erstaunlichen Resultat. Nur 22 verschiedene Aminosäuren sind am Aufbau der Biopolymere beteiligt. Trotzdem ist ihre Vielfalt gewaltig. Im menschlichen Organismus findet man mehr als 100 000 verschiedene Eiweiße, die alle spezifische Funktionen erfüllen. Nach ihrer Funktion unterteilt man die Proteine in verscheidene Gruppen.

Lösungsmittel und ihre Eigenschaften

Lösungsmittel sind flüssige Verbindungen, die feste, flüssige und gasförmige Substanzen lösen können, ohne diese oder sich selbst chemisch zu verändern. Bei einem Lösevorgang wird die Gitterenergie der Verbindung aufgehoben. Dabei werden energetisch weniger fest gebundene äußere Kristallmoleküle oder -ionen einer Verbindung durch das Lösungsmittel herausgelöst, in Form einer Hülle abgefangen und stabilisiert. Ebenso müssen die inneren Kräfte der Lösungsmittelmoleküle überwunden werden. Die benötigte Energie wird aus der Anziehung zwischen den gelösten Teilchen und dem Lösungsmittel erhalten. Im Fall von Wasser bezeichnet man diesen Vorgang als Hydratisierung, bei anderen Lösungsmitteln von Solvatisierung. Neben Wasser, das sich durch seine Fähigkeit zur dreidimen sionalen Ausbildung von Wasserstoffbrücken auszeichnet, werden viele anorganische und organische Flüssigkeiten als Lösungsmittel eingesetzt. Sie gehören zu den nichtwässrigen Systemen und werden nach ihrer Fähigkeit zur Abgabe von Protonen oder anderen Ionen und ihrer Polarität in die Kategorien protisch, aprotisch unpolar und aprotisch polar unterteilt.

Ein Angebot von

Footer

  • Impressum
  • Sicherheit & Datenschutz
  • AGB
© Duden Learnattack GmbH, 2025