Direkt zum Inhalt

Pfadnavigation

  1. Startseite
  2. Mathematik Abitur
  3. 11 Analytische Geometrie der Ebene und des Raumes
  4. 11.1 Geraden in der Ebene und im Raum
  5. 11.1.1 Punktrichtungsgleichung einer Geraden
  6. Geraden, Lagebeziehungen

Geraden, Lagebeziehungen

Hier kannst du dich selbst testen. So kannst du dich gezielt auf Prüfungen und Klausuren vorbereiten oder deine Lernerfolge kontrollieren.

Multiple-Choice-Test zum Thema "Mathematik - Lagebeziehungen von Geraden".

Viel Spaß beim Beantworten der Fragen!

WISSENSTEST

Schule wird easy mit KI-Tutor Kim und Duden Learnattack

  • Kim hat in Deutsch, Mathe, Englisch und 6 weiteren Schulfächern immer eine von Lehrkräften geprüfte Erklärung, Video oder Übung parat.
  • 24/7 auf Learnattack.de und WhatsApp mit Bildupload und Sprachnachrichten verfügbar. Ideal, um bei den Hausaufgaben und beim Lernen von Fremdsprachen zu unterstützen.
  • Viel günstiger als andere Nachhilfe und schützt deine Daten.
Jetzt 30 Tage risikofrei testen
Your browser does not support the video tag.
Lernhelfer (Duden Learnattack GmbH): "Geraden, Lagebeziehungen." In: Lernhelfer (Duden Learnattack GmbH). URL: http://www.lernhelfer.de/index.php/schuelerlexikon/mathematik-abitur/artikel/geraden-lagebeziehungen (Abgerufen: 21. May 2025, 00:40 UTC)

Suche nach passenden Schlagwörtern

  • Lagebeziehungen
  • Geraden
  • Wissenstest
  • Test
Jetzt durchstarten

Lernblockade und Hausaufgabenstress?

Entspannt durch die Schule mit KI-Tutor Kim und Duden Learnattack.

  • Kim hat in Deutsch, Mathe, Englisch und 6 weiteren Schulfächern immer eine von Lehrkräften geprüfte Erklärung, Video oder Übung parat.
  • 24/7 auf Learnattack.de und WhatsApp mit Bildupload und Sprachnachrichten verfügbar. Ideal, um bei den Hausaufgaben und beim Lernen von Fremdsprachen zu unterstützen.
  • Viel günstiger als andere Nachhilfe und schützt deine Daten.

Verwandte Artikel

Abstand windschiefer Geraden

In Analogie zur Definition des Abstandes anderer geometrischer Objekte wird unter dem Abstand zweier windschiefer Geraden g und h im Raum die Länge der kürzesten Strecke A B ¯ verstanden, die einen beliebigen Punkt A von g mit einem beliebigen Punkt B von h verbindet.

Zur Geschichte des euklidischen Parallelenaxioms

In seinem Hauptwerk „Die Elemente“ legt EUKLID VON ALEXANDRIA (etwa 365 bis etwa 300 v.Chr.) einen systematischen Aufbau der Geometrie vor. Dabei spielt das sogenannte Parallelenaxiom eine besondere Rolle.
Zum Ende des 18. Jahrhunderts setzte sich immer mehr die Erkenntnis durch, dass das Parallelenaxiom nicht aus den anderen Axiomen EUKLIDS ableitbar und damit für den Aufbau der euklidischen Geometrie unverzichtbar ist.
Ausgehend von der Negation des Parallelenaxioms gelang es, völlig neue und in sich widerspruchsfreie Geometrien aufzubauen. Der russische Mathematiker LOBATSCHEWSKI und der Ungar JANOS BOLAYI entdeckten unabhängig voneinander zunächst die hyperbolische Geometrie, BERNHARD RIEMANN entwickelte später die elliptische Geometrie.
Speziell gehört es heute zu den aktuellen Fragen der Physik, welche der Geometrien das Universum im Großen am besten beschreibt. Ist es also elliptisch (sphärisch), euklidisch (eben) oder hyperbolisch?

Darstellung von Vektoren

Unter einem Vektor versteht man die Menge aller Pfeile, die gleich lang, zueinander parallel und gleich orientiert sind.
Ein einzelner Pfeil aus dieser Menge heißt ein Repräsentant des Vektors.

Aus dieser Begriffsfestlegung ergibt sich die Möglichkeit, Vektoren in der Ebene und im Raum durch gerichtete Strecken darzustellen.

Fasst man Vektoren (allgemeiner) als n-Tupel reeller Zahlen auf, so führt dies zu einer Darstellung in Form einspaltiger bzw. einzeiliger Matrizen (Spalten- bzw. Zeilenvektoren).

Vektorprodukt zweier Vektoren

Analog zum Skalarprodukt wird ein neues Produkt a → × b → zweier Vektoren a →       u n d       b → definiert. Dazu werden zunächst Anwendungsbeispiele betrachtet.

Eigenschaften des Vektorprodukts

Für das Vektorprodukt gelten das Alternativgesetz und das Distributivgesetz.
Das Assoziativgesetz dagegen trifft im Allgemeinen nicht zu.
Geometrische Anwendungen sind neben der Berechnung des Flächeninhalts (von Parallelogrammen) das Bestimmen des Schnittwinkels zweier Ebenen, das Ermitteln des Normalenvektors einer Ebene oder das Berechnen des Abstands zweier windschiefer Geraden.

Ein Angebot von

Footer

  • Impressum
  • Sicherheit & Datenschutz
  • AGB
© Duden Learnattack GmbH, 2025