Direkt zum Inhalt

Pfadnavigation

  1. Startseite
  2. Physik Abitur
  3. 8 Spezielle Relativitätstheorie
  4. 8.3 Relativistische Kinematik
  5. 8.3.0 Relativistische Kinematik
  6. Akustischer und optischer DOPPLER-Effekt

Akustischer und optischer DOPPLER-Effekt

Der österreichische Physiker CHRISTIAN DOPPLER (1803-1853) entdeckte 1842, dass zwischen der von einem Beobachter wahrgenommenen Tonfrequenz und der Bewegung einer Schallquelle ein Zusammenhang besteht. Dieser Effekt wird als akustischer DOPPLER-Effekt bezeichnet.
Ein analoger Effekt tritt bei Licht auf. Er wird optischer oder relativistischer DOPPLER-Effekt genannt.

Schule wird easy mit KI-Tutor Kim und Duden Learnattack

  • Kim hat in Deutsch, Mathe, Englisch und 6 weiteren Schulfächern immer eine von Lehrkräften geprüfte Erklärung, Video oder Übung parat.
  • 24/7 auf Learnattack.de und WhatsApp mit Bildupload und Sprachnachrichten verfügbar. Ideal, um bei den Hausaufgaben und beim Lernen von Fremdsprachen zu unterstützen.
  • Viel günstiger als andere Nachhilfe und schützt deine Daten.
Jetzt 30 Tage risikofrei testen
Your browser does not support the video tag.

Der akustische DOPPLER-Effekt

Sind eine Schallquelle und ein Beobachter zueinander in Ruhe, so registriert der Beobachter genau die Frequenz (Tonhöhe), die von der Schallquelle abgegeben wird. Bei einer Relativbewegung zwischen Schallquelle und Beobachter ist ein anderer Effekt festzustellen.
Der österreichische Physiker CHRISTIAN DOPPLER (1803-1853) entdeckte 1842, dass zwischen der von einem Beobachter wahrgenommenen Tonhöhe, die durch die Frequenz bestimmt wird, und der Bewegung einer Schallquelle ein Zusammenhang besteht. Diesen Effekt, der als akustischer DOPPLER-Effekt bezeichnet wird, kann man auch im Alltag leicht feststellen: Fährt z.B. ein hupendes Auto vorbei, so ist der Ton der Hupe beim Annähern des Autos höher als beim Entfernen. Die Deutung kann auch so erfolgen, wie es in Bild 1 dargestellt ist.
In Abhängigkeit davon, ob sich der Beobachter oder die Schallquelle bewegen, kann man verschiedene Fälle unterscheiden und auch mathematisch beschreiben.

Die Schallquelle bewegt sich und der Empfänger (Beobachter) ruht
Beim Annähern gilt:Beim Entfernen gilt:
f E = f S 1 − v v Schall
größere Frequenz, höherer Ton
f E = f S 1 + v v Schall
kleinere Frequenz, tieferer Ton
Der Empfänger (Beobachter) bewegt sich und die Schallquelle ruht
Beim Annähern gilt:Beim Entfernen gilt:
f E = f S   ( 1 + v v Schall )
größere Frequenz, höherer Ton
f E = f S   ( 1 − v v Schall )
kleinere Frequenz, tieferer Ton
Dabei bedeuten:
f E vom Empfänger gemessene Frequenz f S vom Sender (Quelle) abgestrahlte Frequenz v Geschwindigkeit des Senders oder des Empfängers v Schall Schallgeschwindigkeit

Der optische DOPPLER-Effekt

DOPPLER selbst vertrat die Auffassung, dass der vom ihm entdeckte Effekt auch im optischen Bereich gilt. Diese Vermutung lag nahe, denn die Ausbreitung von Lichtwellen in einem Äther wurde als Analogie zur Ausbreitung von Schallwellen in Luft gedeutet. Ein experimenteller Nachweis konnte zu dieser Zeit nicht erbracht werden. Eine Erklärung für den optischen DOPPLER-Effekt lieferte erst die spezielle Relativitätstheorie. Deshalb ist auch die Bezeichnung relativistischer DOPPLER-Effekt üblich.

Im Unterschied zum akustischen DOPPLER-Effekt, der sich auf Schallwellen bezieht, handelt es sich bei Licht um elektromagnetische Wellen. Bei ihnen existiert, wie wir heute wissen, kein Trägermedium. Es ist auch kein ausgezeichnetes Bezugssystem vorhanden, relativ zu dem sich eine Phasengeschwindigkeit angeben lässt. Ausschlaggebend sind nur die Relativgeschwindigkeit zwischen Lichtquelle (Sender) und Beobachter (Empfänger) sowie die Lichtgeschwindigkeit. Es gelten die folgenden Beziehungen:

Annähern von Sender und EmpfängerEntfernen von Sender und Empfänger
f E = f S   1 + v c 1 − v c
höhere Frequenz, kleinere Wellenlänge, Violettverschiebung
f E = f S   1 − v c 1 + v c
niedrigere Frequenz, größere Wellenlänge, Rotverschiebung
Dabei bedeuten:
f E vom Empfänger gemessene Frequenz f S vom Sender (Quelle) abgestrahlte Frequenz v Relativgeschwindigkeit zwischen Sender und Empfänger c Lichtgeschwindigkeit

Unter Nutzung der Gleichung
c = λ ⋅ f bzw . f = c λ
erhält man Gleichungen für die Wellenlänge, die vom Empfänger registriert wird:

Beim Annähern von Sender und EmpfängerBeim Entfernen von Sender und Empfänger
λ E = λ S   1 − v c 1 + v c λ E = λ S   1 + v c 1 − v c

Violettverschiebung und Rotverschiebung

Beim Annähern von Sender und Empfänger wird vom Empfänger im Vergleich mit einer ruhenden Quelle eine Verschiebung von Spektrallinien in Richtung kleinerer Wellenlänge registriert. Da im Bereich des sichtbaren Lichtes das violette Licht die kleinste Wellenlänge hat, spricht man von einer Violettverschiebung, also einer Verschiebung in Richtung Violett.
Beim Entfernen von Sender und Empfänger wird vom Empfänger im Vergleich mit einer ruhenden Quelle eine Verschiebung von Spektrallinien in Richtung größerer Wellenlänge registriert. Man spricht deshalb von einer Rotverschiebung. Nicht verwechselt werden darf diese Rotverschiebung mit der Beeinflussung von Frequenzen bzw. Wellenlänge durch Gravitationsfelder, die mitunter als relativistische Rotverschiebung bezeichnet wird und nur im Rahmen der allgemeinen Relativitätstheorie erklärt werden kann.

Entdeckung und Bedeutung der Rotverschiebung

Entdeckt wurde die Verschiebung von Spektrallinien in Richtung Rot im Jahre 1929 durch den amerikanischen Astronomen EDWIN POWELL HUBBLE (1889-1953). HUBBLE untersuchte die Spektren von Galaxien und stellte dabei fest, dass die bekannten Spektrallinien verschiedener Elemente durchweg in Richtung größerer Wellenlängen verschoben waren.
Als Rotverschiebung wird in der Astronomie folgender Term festgelegt:

z = λ E − λ S λ S = Δ λ λ S λ E vom Empfänger gemessene Wellenlänge λ S Wellenlänge bei ruhender Quelle (im Labor)

Unter Nutzung der oben genannten Gleichung für die Wellenlänge beim Entfernen von Sender und Empfänger voneinander kann man auch schreiben:
Δ λ λ S = 1 + v c 1 − v c − 1
Stellt man die Gleichung nach der Geschwindigkeit v um, so erhält man eine Gleichung für die Geschwindigkeit, mit der sich eine Lichtquelle vom Beobachter entfernt. Die Geschwindigkeit wird in der Astronomie deshalb als Fluchtgeschwindigkeit bezeichnet. Für die Fluchtgeschwindigkeit gilt:
v = ( Δ λ / λ S + 1 ) 2 − 1 ( Δ λ / λ S + 1 ) 2 + 1 ⋅ c

Rotverschiebung in der Astronomie

Die Rotverschiebung von Spektrallinien ermöglicht es, die Bewegung von Galaxien und Quasaren genauer zu charakterisieren. Quasare wurden 1963 entdeckt. Es sind wahrscheinlich die Kerne junger Galaxien. Sie senden eine starke Radiostrahlung aus. Astronomische Untersuchungen haben ergeben:

Bei allen Galaxien tritt eine Rotverschiebung auf. Das bedeutet: Sie entfernen sich von uns, wobei die Fluchtgeschwindigkeit mit der Entfernung zunimmt. Für den Zusammenhang zwischen der Fluchtgeschwindigkeit und der Entfernung gilt das Gesetz von HUBBLE:

v = H ⋅ r v Fluchtgeschwindigkeit H HUBBLE-Konstante (50   km s ⋅ Mpc > H > 10 0   km s ⋅ Mpc ) r Entfernung des kosmischen Objektes

Die größten bisher gemessenen Rotverschiebungen treten bei Quasaren auf. So wurde im Jahre 2000 ein Quasar mit einer Rotverschiebung von 5,8 entdeckt. Hier verschiebt sich die LYMAN- - Linie des Wasserstoffs, die im Labor eine Wellenlänge von 121,6 nm hat, zu 829,3 nm. Damit ergibt sich für diesen Quasar eine Fluchtgeschwindigkeit von 0,96 c oder 96 % der Lichtgeschwindigkeit.

Lernhelfer (Duden Learnattack GmbH): "Akustischer und optischer DOPPLER-Effekt." In: Lernhelfer (Duden Learnattack GmbH). URL: http://www.lernhelfer.de/index.php/schuelerlexikon/physik-abitur/artikel/akustischer-und-optischer-doppler-effekt (Abgerufen: 20. May 2025, 20:52 UTC)

Suche nach passenden Schlagwörtern

  • Rotverschiebung
  • Violettverschiebung
  • Berechnung
  • Dopplereffekt
  • Empfänger
  • Wellenlänge
  • relativistischer Doppler-Effekt
  • Astronomie
  • Fluchtgeschwindigkeit
  • EDWIN POWELL HUBBLE
  • Spektrallinien
  • Frequenz
  • akustischer Doppler-Effekt
  • Simulation
  • Quasare
  • Sender
  • Rechenbeispiel
  • Doppler-Effekt
  • optischer Doppler-Effekt
  • relativistische Rotverschiebung
Jetzt durchstarten

Lernblockade und Hausaufgabenstress?

Entspannt durch die Schule mit KI-Tutor Kim und Duden Learnattack.

  • Kim hat in Deutsch, Mathe, Englisch und 6 weiteren Schulfächern immer eine von Lehrkräften geprüfte Erklärung, Video oder Übung parat.
  • 24/7 auf Learnattack.de und WhatsApp mit Bildupload und Sprachnachrichten verfügbar. Ideal, um bei den Hausaufgaben und beim Lernen von Fremdsprachen zu unterstützen.
  • Viel günstiger als andere Nachhilfe und schützt deine Daten.

Verwandte Artikel

Lärm und Lärmbekämpfung

Schall, der als belästigend empfunden wird oder gar zu gesundheitlichen Schäden führen kann, wird als Lärm bezeichnet. Die stärkste Lärmquelle ist bei uns der Straßenverkehr. Lärm kann den menschlichen Körper stark beeinflussen und zu körperlichen Schäden führen.
Die Vermeidung von Lärm ist der beste Lärmschutz. Wo Lärm unvermeidlich ist, sollte er gedämpft oder gedämmt werden.

Schallaufzeichnung und Schallwiedergabe

Der Mensch hatte schon immer das Bedürfnis, Schall (Sprache, Musik) aufzuzeichnen, um ihn zu einem späteren Zeitpunkt wieder hören zu können. Die technischen Voraussetzungen dafür wurden aber erst im 19. Jahrhundert entwickelt. Wichtige Etappen waren dabei der von THOMAS ALVA EDISON (1847-1931) entwickelte Phonograph, die von EMIL BERLINER (1851-1929) erfundene Schallplatte und die um 1935 konstruierten ersten Tonbandgeräte. Die Entwicklung der Elektronik führte in den siebziger Jahren zur Entwicklung der Compaktdisc (CD). Eine Entwicklung der letzten Jahre ist die Digitale Video-Disc (DVD).

Schall und Musik

Mithilfe von Musikinstrumenten lässt sich in unterschiedlicher Art und Weise Schall erzeugen. So schwingen z. B. bei Violinen oder Gitarren Saiten, bei Blasinstrumenten Luftsäulen, bei einer Pauke eine Membran. Charakteristisch ist für jedes Instrument eine bestimmte Klangfarbe, die eng mit den unterschiedlichen Schwingungsformen zusammenhängt.

Wenn man Musik machen will, muss man Tonleitern und musikalische Intervalle kennen. Einfache Untersuchungen kann man an selbst gebauten Instrumenten durchführen.

Schwingende Saiten und Luftsäulen

Bei einer Reihe von Musikinstrumenten wird Schall erzeugt, indem man Saiten oder Luftsäulen zum Schwingen bringt. Beispiele für Saiteninstrumente sind Gitarren, Geigen, Bratschen, Klaviere oder Harfen. Schwingende Luftsäulen findet man z. B. bei Orgeln, Klarinetten, Saxofonen, Trompeten oder Posaunen.
Die Frequenz der Schwingungen und damit die Tonhöhe des entstehenden Schalls ist u. a. von der Länge der Saiten bzw. der Luftsäulen abhängig.

Tonhöhe und Lautstärke

Wie wir Schall empfinden, hängt in starkem Maße von der Tonhöhe und der Lautstärke ab. Beides sind keine physikalischen, sondern physiologische Größen. Die Tonhöhe wird durch die Frequenz (Schnelligkeit der Druckschwankungen) bestimmt. Je größer die Frequenz der Schwingungen ist, desto höher ist der Ton. Die Lautstärke wird durch die Amplitude der Schwingungen (Größe der Druckschwankungen) bestimmt. Je größer die Amplitude der Schwingungen ist, desto lauter ist der Ton. Die Lautstärke wird in der Einheit Phon (phon) angegeben und kann mit Schallpegelmessern bestimmt werden.

Ein Angebot von

Footer

  • Impressum
  • Sicherheit & Datenschutz
  • AGB
© Duden Learnattack GmbH, 2025