Direkt zum Inhalt

Pfadnavigation

  1. Startseite
  2. Physik Abitur
  3. 2 Mechanik
  4. 2.8 Mechanische Schwingungen und Wellen
  5. 2.8.1 Entstehung und Beschreibung mechanischer Schwingungen
  6. Gedämpfte harmonische Schwingungen

Gedämpfte harmonische Schwingungen

Mechanische Schwingungen können ungedämpft oder gedämpft verlaufen. Solche ungedämpften Schwingungen treten immer dann auf, wenn ein Schwinger einmalig angeregt wurde und sich selbst überlassen bleibt, also freie Schwingungen ausführt, wie das z.B. bei einer einmal angeschlagenen Saite einer Gitarre der Fall ist. Aufgrund von Reibungseffekten wird dann ständig mechanische Energie in thermische Energie umgewandelt. Damit verringert sich die Amplitude der Schwingungen.
Bei harmonischen mechanischen Schwingungen kann man die Abnahme der Amplitude auch mathematisch erfassen.

Schule wird easy mit KI-Tutor Kim und Duden Learnattack

  • Kim hat in Deutsch, Mathe, Englisch und 6 weiteren Schulfächern immer eine von Lehrkräften geprüfte Erklärung, Video oder Übung parat.
  • 24/7 auf Learnattack.de und WhatsApp mit Bildupload und Sprachnachrichten verfügbar. Ideal, um bei den Hausaufgaben und beim Lernen von Fremdsprachen zu unterstützen.
  • Viel günstiger als andere Nachhilfe und schützt deine Daten.
Jetzt 30 Tage risikofrei testen
Your browser does not support the video tag.

Auch bei Fadenpendeln oder Federschwingern zeigt sich dieser Effekt der ständigen Verkleinerung der Amplitude, wenn man sie einmalig anregt und sie dann sich selbst überlässt. Der Vorgang führt letztlich dazu, dass der Schwinger in der Gleichgewichtslage verharrt.

Energieumwandlungen bei mechanischen Schwingungen

Führt ein Schwinger mechanische Schwingungen aus, dann tritt auch immer Reibung auf. Aufgrund von Reibungseffekten wird dann ständig ein Teil der mechanischen Energie, die der Schwinger besitzt, in thermische Energie umgewandelt. Damit verringert sich die mechanische Energie des Schwingers, also auch seine Amplitude (Bild 2). Wie schnell dieser Prozess vor sich geht, hängt von der Stärke der Dämpfung ab. Aus energetischer Sicht gilt für eine gedämpfte Schwingung der Energieerhaltungssatz in der Form:
E gesamt = E pot + E kin + E therm

Die thermische Energie bleibt allerdings nicht im System Schwinger, sondern wird an die Umgebung abgegeben und geht damit dem Schwinger verloren.

  • Gedämpfte und ungedämpfte Schwingungen im Vergleich.

Mathematische Beschreibung einer gedämpften harmonischen Schwingung

Eine gedämpfte harmonische Schwingung lässt sich in Form einer Differenzialgleichung erfassen. Sie lautet:

d 2 y d t 2 + 2   δ ⋅ d y d t + ω 0 2 ⋅ y = 0 y Elongation (Auslenkung) t Zeit δ Abklingkoeffizient ω 0 Kreisfrequenz der ungedämpften Schwingung

Als Lösung dieser Differenzialgleichung erhält man:

y = y max ⋅ e − δ ⋅ t ⋅ sin   ( ω ⋅ t + φ 0 )

Die Einhüllende der Amplituden wird als Abklingkurve bezeichnet. Wie sie sich in Abhängigkeit vom Abklingkoeffizienten verändert, kann man mit dem nebenstehenden Beispiel selbst ausprobieren. Für den Abklingkoeffizienten können unterschiedliche Werte eingegeben werden. Nach Betätigung der ENTER-Taste erhält man sofort die entsprechende grafische Darstellung.

Aus der Schwingungsgleichung für eine gedämpfte harmonische Schwingung ergibt sich:

  • Die maximale Elongation (Amplitude) verringert sich mit der Zeit.
  • Die Frequenz der Schwingungen und damit auch die Schwingungsdauer verändert sich mit Verringerung der Amplitude nicht.
  • BWS-PHY2-0230-05.mcd (21.13 KB)
Lernhelfer (Duden Learnattack GmbH): "Gedämpfte harmonische Schwingungen." In: Lernhelfer (Duden Learnattack GmbH). URL: http://www.lernhelfer.de/index.php/schuelerlexikon/physik-abitur/artikel/gedaempfte-harmonische-schwingungen (Abgerufen: 10. January 2026, 14:34 UTC)

Suche nach passenden Schlagwörtern

  • gedämpfte Schwingungen
  • Berechnung
  • freie Schwingungen
  • Abklingkurve
  • Schwingungsgleichung
  • Abklingkoeffizient
  • Rechenbeispiel
  • Gedämpfte harmonische Schwingungen
  • Dämpfung
  • Differenzialgleichung
Jetzt durchstarten

Lernblockade und Hausaufgabenstress?

Entspannt durch die Schule mit KI-Tutor Kim und Duden Learnattack.

  • Kim hat in Deutsch, Mathe, Englisch und 6 weiteren Schulfächern immer eine von Lehrkräften geprüfte Erklärung, Video oder Übung parat.
  • 24/7 auf Learnattack.de und WhatsApp mit Bildupload und Sprachnachrichten verfügbar. Ideal, um bei den Hausaufgaben und beim Lernen von Fremdsprachen zu unterstützen.
  • Viel günstiger als andere Nachhilfe und schützt deine Daten.

Verwandte Artikel

Schwingende Flüssigkeitssäulen und schwimmende Körper

Harmonische mechanische Schwingungen werden nicht nur von Federschwingern und Fadenpendel durchgeführt. Lässt man eine Flüssigkeitssäule in einem U-förmigen Rohr hin- und herschwingen, so führt diese Flüssigkeitssäule ebenfalls harmonische Schwingungen aus, wobei die Schwingungsdauer nur vom Rohrdurchmesser und vom Volumen der eingefüllten Flüssigkeit abhängig ist.
Auch ein Körper, der in einer Flüssigkeit schwimmt, kann eine harmonische Schwingung ausführen, wobei die Schwingungsdauer in diesem Falle von den Dichten des Körpers und der Flüssigkeit sowie von den Abmessungen des Körpers abhängig ist.

Resonanz

Schwingende Körper (Schwinger, Oszillatoren) können durch Energiezufuhr von außen zu erzwungenen Schwingungen angeregt werden. Ist die Erregerfrequenz gleich der Eigenfrequenz des Schwingers, so erreicht die Amplitude der Schwingung ein Maximum. Das wird als Resonanz bezeichnet. Die Resonanzbedingung lautet:

f E = f 0 f E Erregerfrequenz f 0 Eigenfrequenz des Schwingers

Schall und seine Eigenschaften

Alles, was akustisch mit den Ohren wahrgenommen werden kann, ist Schall. Schall geht von Schallquellen aus. Seinem Wesen nach ist Schall eine longitudinale mechanische Welle, bei der sich zeitlich periodisch der Druck ändert. Schall breitet sich in einem Stoff mit einer bestimmten Geschwindigkeit, der Schallgeschwindigkeit, aus. Er kann reflektiert, gebrochen und absorbiert werden. Da Schall eine mechanische Welle ist, treten bei Schallwellen auch Beugung und Interferenz auf.

Schwingungsdämpfer

Schwingungsdämpfer oder Stoßdämpfer bei Fahrzeugen dienen dazu, einerseits den Fahrkomfort zu verbessern und andererseits die Verkehrssicherheit der Fahrzeuge zu erhöhen. Die Schwingungsdämpfer sind so angeordnet und konstruiert, dass die durch Fahrbahnunebenheiten hervorgerufenen Schwingungen stark gedämpft werden und damit die Personen im Inneren des Fahrzeugs keinen starken Stößen ausgesetzt sind.

Zeigerdarstellung von Schwingungen

Schwingungen können in unterschiedlicher Weise dargestellt werden. Eine Möglichkeit besteht in der mathematischen Beschreibung mithilfe der Schwingungsgleichung y = y max ⋅ sin   ( ω ⋅ t + φ 0 ) .
Eine zweite Möglichkeit ist die Darstellung in y-t-Diagrammen, die man auch experimentell durch eine der vielfältigen Formen der Schwingungsaufzeichnung gewinnen kann.
Für harmonische Schwingungen gibt es noch eine dritte, recht anschauliche und leicht zu realisierende Möglichkeit, die Zeigerdarstellung. Dabei wird genutzt, dass man eine harmonische Schwingung als Projektion eines gleichförmig rotierenden Zeigers auf eine Achse auffassen kann.

Ein Angebot von

Footer

  • Impressum
  • Sicherheit & Datenschutz
  • AGB
© Duden Learnattack GmbH, 2026