Direkt zum Inhalt

17 Suchergebnisse

Alle Filter zurücksetzen
Artikel lesen

Gedämpfte harmonische Schwingungen

Mechanische Schwingungen können ungedämpft oder gedämpft verlaufen. Solche ungedämpften Schwingungen treten immer dann auf, wenn ein Schwinger einmalig angeregt wurde und sich selbst überlassen bleibt, also freie Schwingungen ausführt, wie das z.B. bei einer einmal angeschlagenen Saite einer Gitarre der Fall ist. Aufgrund von Reibungseffekten wird dann ständig mechanische Energie in thermische Energie umgewandelt. Damit verringert sich die Amplitude der Schwingungen.
Bei harmonischen mechanischen Schwingungen kann man die Abnahme der Amplitude auch mathematisch erfassen.

Artikel lesen

Differenzen- und Differenzialgleichungen

Gleichungen als typisches Arbeitsmittel und zugleich bedeutsamer Arbeitsgegenstand der Mathematik treten in der Schulmathematik vor allem als lineare, quadratische, goniometrische und Wurzelgleichungen auf. Sie werden zur Berechnung von Funktionswerten für gegebene Argumente, zur Bestimmung der Nullstellen und zur Ermittlung von Extrempunkten von Funktionen, zur analytischen Untersuchung von Eigenschaften geometrischer Gebilde u.a. genutzt. In allen diesen Fällen handelt es sich um Gleichungen, deren Lösungen Zahlen oder Größen sind.

Differenzen- und Differenzialgleichungen sind von anderer Natur, denn sie besitzen als Lösungen Folgen bzw. Funktionen. Dennoch sind sie uns nicht ganz unbekannt. So kann beispielsweise eine geometrische Folge explizit durch a i = s ⋅ q i ,   i ∈ ℕ ,   q , s ∈ ℝ beschrieben werden, aber auch durch die rekursive Bildungsvorschrift a 0 = s     u n d     a i     +   1 = q ⋅ a i ,   i ∈ ℕ .

Artikel lesen

Differenzialgleichungen zur Beschreibung von Federschwingungen

Ein Körper, der an einer Feder befestigt ist, führt nach einer Auslenkung eine Schwingung durch. Der Ort des Körpers wird durch die zeitabhängige Ortskoordinate y(t) beschrieben, deren Gleichung gefunden werden soll.
Im Folgenden werden mit einer derartigen Anordnung gedämpfte und ungedämpfte Schwingungen untersucht.

Artikel lesen

Differenzialgleichungen zur Beschreibung des Lade- und Entladevorgangs eines Kondensators

In einem Gleichstromkreis befindet sich eine Spannungsquelle mit der Spannung U 0 ein ohmscher Widerstand R und ein Kondensator mit der Kapazität C.
Wird Spannung angelegt, so fließt über den Widerstand R ein Strom I zum Kondensator und lädt ihn auf. Dabei wächst die Kondensatorspannung U C = Q C .

Beim Stromfluss fällt am Widerstand die Spannung U R = I ⋅ R ab. Die Summe aus Spannungsabfall am ohmschen Widerstand und Kondensatorspannung ist immer gleich der Spannung der Spannungsquelle.

Es gilt also U 0 = U R + U C = I R + Q C , woraus mit I = d Q d   t folgt:
U 0 = R d Q d   t + Q C   b z w .   d Q d   t + Q R C = U 0 R

Diese Gleichung ist eine lineare inhomogene Differenzialgleichung 1. Ordnung der Form f ′ ( x ) + q   f ( x ) = s mit den Koeffizienten q = 1 R C   u n d   s = U 0 R sowie der gesuchten Funktion Q = Q ( t ) , die im Folgenden zu lösen ist.

Artikel lesen

Differenzialgleichungen zur Beschreibung des elektromagnetischen Schwingkreises

Ein elektromagnetischer Schwingkreis ist ein geschlossener Stromkreis, in dem ein Kondensator und eine Spule (mit induktivem und ohmschem Widerstand - in der folgenden Abbildung der Übersichtlichkeit halber getrennt gezeichnet) in Reihe geschaltet sind.

Artikel lesen

Differenzialgleichungen zur Beschreibung der Füllstandssteuerung einer Talsperre

Der Füllstand einer Talsperre wird ausgedrückt durch das (aktuelle) Stauvolumen V(t), das sich durch den Zu- und Abfluss von Wasser mit der Zeit t ändern kann. Zu- und Abfluss von Wasser geben an, welches Wasservolumen pro Zeiteinheit in die Talsperre hinein- bzw. aus ihr herausfließt.
Beide werden zusammengefasst zur Wasserzufuhr Z(t), die sich ebenfalls mit der Zeit ändern kann. Überwiegt der Zufluss, so gilt Z ( t ) ≥ 0, überwiegt dagegen der Abfluss, so ist Z ( t ) ≤ 0.

Artikel lesen

Terminologie der Differenzialgleichungen

Eine Differenzialgleichung ist eine Gleichung, in der Ableitungen unbekannter Funktionen auftreten. Handelt es sich bei den Funktionen um Funktionen einer Veränderlichen, so nennt man die Differenzialgleichungen „gewöhnliche Differenzialgleichungen“, bei mehreren Veränderlichen „partielle Differenzialgleichungen“.

Beispiele für gewöhnliche Differenzialgleichungen sind x   y ′ − y + c     x = 0 oder auch y ″ = c   y .

Die Theorie der Differenzialgleichungen untersucht, ob es eine oder mehrere Funktionen gibt, die (in die Differenzialgleichung eingesetzt) diese für jeden Wert der Variablen erfüllen und wie diese Funktion bzw. diese Funktionen gefunden werden können. Für einige Typen von Differenzialgleichungen lassen sich exakte Verfahren zum Auffinden von Lösungen angeben, sonst müssen Näherungsverfahren oder numerische Verfahren verwendet werden. Für numerische Verfahren werden auf modernen Rechenanlagen leistungsfähige Programme angeboten.

Durch Differenzialgleichungen lassen sich gewisse physikalische Gesetzmäßigkeiten gut darstellen, z.B. Schwingungs- und Strömungsvorgänge.
Im Folgenden werden einige wichtige Begriffe aus der Theorie der gewöhnlichen Differenzialgleichungen erläutert.

Artikel lesen

Lösen von linearen inhomogenen Differenzialgleichungen 1. Ordnung mittels Variation der Konstanten

Die Gleichung y ′ + f ( x ) y + g ( x ) = 0 ist die allgemeine Form einer linearen inhomogenen Differenzialgleichung 1. Ordnung.
Mit Variation der Konstanten wird eine Methode zum Integrieren dieser Gleichung bezeichnet. Die Vorgehensweise besteht darin, zuerst die zugehörige homogene Differenzialgleichung zu lösen, d.h., das Glied g(x) zu vernachlässigen. In diese Lösung geht ein freier Parameter c ein. Dieser wird dann als Funktion von x betrachtet und so bestimmt, dass die so modifizierte Lösung der linearen homogenen Differenzialgleichung der inhomogenen genügt.

Artikel lesen

Unbeschränktes und logistisches Wachstum (Differenzialgleichungen)

Eine Population bestehe aus N Individuen. Nach einer Zeit Δ t ist eine Änderung Δ N mit Δ N = N ( t + Δ t ) − N ( t ) des Populationsumfangs N zu verzeichnen. Kann die Population ohne Beschränkung wachsen, so ist die Änderung proportional zum Ausgangsumfang – je mehr Individuen vorhanden sind, desto mehr Nachwuchs stellt sich ein. Es gilt also Δ N ∼ N  oder  Δ N = k N (unbeschränktes Wachstum), wobei k als Wachstumsrate (bei unbeschränktem Wachstum) bezeichnet wird.
Ist das Wachstum durch eine Obergrenze G der Individuenzahl beschränkt, so wird sich bei noch kleiner Individuenzahl ein annähernd unbeschränktes Wachstum einstellen, mit wachsender Zahl N wird die Wachstumsrate jedoch kleiner, um schließlich bei N = G den Wert 0 anzunehmen. Eine Beschränkung kommt beispielsweise zustande, wenn die Population in einem isolierten Gebiet lebt, in dem sich höchstens G Individuen ernähren können.

Die modifizierte Wachstumsrate
k b = k ( 1 − N G )
weist das erwartete Verhalten auf.

Als Differenzengleichung ergibt sich
Δ N = k b ⋅ N = k ⋅ ( 1 − N G ) ⋅ N
(logistisches Wachstum).

Artikel lesen

Richtungsfeld einer Differenzialgleichung

Gewöhnliche Differenzialgleichungen beschreiben Kurvenscharen in der Ebene. Eine Differenzialgleichung 1. Ordnung ordnet jedem Punkt der xy-Ebene einen Wert zu (vorausgesetzt, dass für den Punkt ein Wert definiert ist), welcher der Richtung der Tangente der Integralkurve in diesem Punkt entspricht, ein sogenanntes Linienelement.
Die Gesamtheit der Linienelemente ist das durch die Differenzialgleichung beschriebene Richtungsfeld. Das Bestimmen der Lösung der Differenzialgleichung ist das Bestimmen der Kurven, die auf dieses Richtungsfeld „passen“.

Artikel lesen

Mathematische Darstellung elektromagnetischer Schwingungen

Die Vorgänge in einem elektromagnetischen Schwingkreis können mit verschiedenen mathematischen Hilfsmitteln untersucht werden.
Als ein effektiver Weg zur Lösung der dabei betrachteten Differenzialgleichung erweist sich hierbei das Rechnen mit komplexen Zahlen. Veränderliche Ströme und Ladungen werden mit kleinen Buchstaben, also mit i und q bezeichnet. Im Unterschied dazu bezeichnen wir die imaginäre Einheit mit j, also − 1 = j .

Artikel lesen

Kugel und Feder - Bewegungsgleichung oder Energiesatz

Für die mathematische Beschreibung bzw. Berechnung von Bewegungsvorgängen gibt es oftmals verschiedene Vorgehensweisen. Die Berechnung kann mithilfe des newtonschen Grundgesetzes oder auch mithilfe des Energieerhaltungssatzes erfolgen. Ein Beispiel soll diese beiden Möglichkeiten demonstrieren.

Artikel lesen

Wachstums- und Zerfallsprozesse

Hier kannst du dich selbst testen. So kannst du dich gezielt auf Prüfungen und Klausuren vorbereiten oder deine Lernerfolge kontrollieren.

Multiple-Choice-Test zum Thema "Mathematik - Wachstums und Zerfallsprozesse".

Viel Spaß beim Beantworten der Fragen!

WISSENSTEST

Artikel lesen

Exponentieller Zerfall und exponentielles Wachstum

Viele Wachstums- und Zerfallsprozesse in Natur und Technik verlaufen exponentiell. Hierzu gehören u.a. das Wirtschaftswachstum, die Entwicklung von Tierpopulationen bzw. der radioaktive Zerfall. Idealisiert erfolgt eine Beschreibung dieser Prozesse meist durch die Differenzialgleichung d N d t = − λ ⋅ N .
Die Betrachtung realer Wachstumsprozesse in der Natur führt zum mathematischen Modell „Gebremstes Wachstum“. Berücksichtigt man, dass viele Prozesse nicht kontinuierlich, sondern quantenhaft verlaufen, lassen sie sich oftmals besser durch Rekursionsgleichungen beschreiben.

Artikel lesen

Die Kettenlinie

Als Kettenlinie bzw. Katenoide (engl. catenary; franz. chainette) wird die Kurve bezeichnet, die durch eine in zwei nicht senkrecht übereinander liegenden Punkten frei aufgehängte Kette gegeben ist. Analytisch ist diese durch die hyperbolische Funktion (Hyperbelfunktion) Cosinus hyperbolicus beschrieben.
Die Drehfläche der Kettenlinie heißt Katenoid (Catenoid).

Artikel lesen

Raketenantrieb und Raketengrundgleichung

Eine Rakete wird durch den Rückstoß ausströmender Gase vorwärts getrieben. Sie nutzt damit zur Fortbewegung den Impulserhaltungssatz.
Das hierbei genutzte Prinzip wird als Rückstoßprinzip oder als Raketenprinzip bezeichnet.
Die Endgeschwindigkeit, die eine Rakete erreichen kann, wird durch die Raketengrundgleichung bestimmt. Sie wurde erstmals von dem russischen Forscher KONSTANTIN EDUADOWITSCH ZIOLKOWSKI (1857-1935) angegeben.

Artikel lesen

Die barometrische Höhenformel

Der Druck der uns umgebenden Luft wird durch das Gewicht der Erdatmosphäre verursacht. Der französische Naturforscher BLAISE PASCAL (1623 bis 1663) hat im Jahre 1648 durch vorbildliche Messungen überzeugend nachgewiesen, dass der Luftdruck mit zunehmender Höhe fällt.
Die Berechnung des Luftdrucks in Abhängigkeit von der Höhe kann nach der barometrischen Höhenformel erfolgen. Man erhält sie als Lösung einer Differenzialgleichung, die auf der Grundlage einiger notwendiger vereinfachender Annahmen und dem Gesetz von BOYLE und MARIOTTE modelliert wird.

17 Suchergebnisse

Fächer
  • Mathematik (15)
  • Physik (2)
Klassen
  • Oberstufe/Abitur (17)
Ein Angebot von

Footer

  • Impressum
  • Sicherheit & Datenschutz
  • AGB
© Duden Learnattack GmbH, 2025