Direkt zum Inhalt

Pfadnavigation

  1. Startseite
  2. Mathematik Abitur
  3. 8 Differenzen- und Differenzialgleichungen
  4. 8.2 Differenzialgleichungen
  5. 8.2.1 Arten von Differenzialgleichungen
  6. Differenzialgleichungen zur Beschreibung der Füllstandssteuerung einer Talsperre

Differenzialgleichungen zur Beschreibung der Füllstandssteuerung einer Talsperre

Der Füllstand einer Talsperre wird ausgedrückt durch das (aktuelle) Stauvolumen V(t), das sich durch den Zu- und Abfluss von Wasser mit der Zeit t ändern kann. Zu- und Abfluss von Wasser geben an, welches Wasservolumen pro Zeiteinheit in die Talsperre hinein- bzw. aus ihr herausfließt.
Beide werden zusammengefasst zur Wasserzufuhr Z(t), die sich ebenfalls mit der Zeit ändern kann. Überwiegt der Zufluss, so gilt Z ( t ) ≥ 0, überwiegt dagegen der Abfluss, so ist Z ( t ) ≤ 0.

Schule wird easy mit KI-Tutor Kim und Duden Learnattack

  • Kim hat in Deutsch, Mathe, Englisch und 6 weiteren Schulfächern immer eine von Lehrkräften geprüfte Erklärung, Video oder Übung parat.
  • 24/7 auf Learnattack.de und WhatsApp mit Bildupload und Sprachnachrichten verfügbar. Ideal, um bei den Hausaufgaben und beim Lernen von Fremdsprachen zu unterstützen.
  • Viel günstiger als andere Nachhilfe und schützt deine Daten.
Jetzt 30 Tage risikofrei testen
Your browser does not support the video tag.

Eine Wasserzufuhr Z ( t ) ≠ 0 bewirkt eine Änderung des Stauvolumens V(t). Da die Änderung des Stauvolumens durch die erste Ableitung V ′ ( t ) beschrieben wird, gilt die Gleichung V ′ ( t ) = Z ( t ) . Dabei ist der Füllstand zur Zeit t = 0   m i t   V ( 0 ) = V 0 als Anfangsbedingung gegeben. Für t ≥ 0 beschreibt die Funktion Z(t) die Einstellung des Zu- und Abflusses der Talsperre zu einer beliebigen Zeit t.

Der Füllstand der Talsperre kann durch die Wasserzufuhr Z(t) gesteuert werden. Je nach der verfolgten Zielstellung muss eine geeignete Funktion Z(t) ausgewählt oder eine durch Umweltbedingungen diktierte Funktion Z(t) akzeptiert werden.

Es soll nun für einen speziellen Fall die Entwicklung des Füllstandes betrachtet werden:

Der aktuelle Füllstand einer Talsperre liege mit dem Volumen V ( 0 ) = V 0 noch deutlich unter dem maximalen Volumen V max . Die Zufuhr Z(t) soll so gewählt werden, dass das Stauvolumen V(t) ständig zunimmt, V max aber nicht überschreitet. Das wird erreicht, wenn die Wasserzufuhr Z(t) stets proportional zum momentan noch freien Stauraum V max − V ( t ) gehalten wird, wenn also gilt:
   Z ( t ) = V ′ ( t ) = r ( V max − V ( t ) )   m i t   V ( 0 ) = V 0

(Man sieht:
F ü r   V ( t ) < < V max   i s t   Z ( t )   g r o ß ,   f ü r   V ( t ) = V max   g i l t   Z ( t ) = 0. )

Hierbei handelt es sich um eine lineare Differenzialgleichung 1. Ordnung. Man kann diese auch in der Form V ′ ( t ) + r V ( t ) = r   V max schreiben, was der Differenzialgleichung f ′ ( x ) + q   f ( x ) = s   m i t   q = r   u n d   s = r   V max entspricht. Ihre allgemeine Lösung lautet f ( x ) = s q + k   e − q x , hier also V ( t ) = V max + k   e − r     t . Um den Parameter k zu bestimmen, muss die Anfangsbedingung eingesetzt werden:
V ( 0 ) = V 0 = V max + k   e − r   ⋅     0 = V max + k ⇒ k = V 0 − V max   b z w .   k = − ( V max − V 0 )

Die Lösung des Anfangswertproblems lautet somit:
V ( t ) = V max − ( V max − V 0 ) e − r   t

Bild

Lernhelfer (Duden Learnattack GmbH): "Differenzialgleichungen zur Beschreibung der Füllstandssteuerung einer Talsperre." In: Lernhelfer (Duden Learnattack GmbH). URL: http://www.lernhelfer.de/index.php/schuelerlexikon/mathematik-abitur/artikel/differenzialgleichungen-zur-beschreibung-der (Abgerufen: 16. December 2025, 06:57 UTC)

Suche nach passenden Schlagwörtern

  • Füllstandssteuerung
  • Talsperre
  • Differenzialgleichung
Jetzt durchstarten

Lernblockade und Hausaufgabenstress?

Entspannt durch die Schule mit KI-Tutor Kim und Duden Learnattack.

  • Kim hat in Deutsch, Mathe, Englisch und 6 weiteren Schulfächern immer eine von Lehrkräften geprüfte Erklärung, Video oder Übung parat.
  • 24/7 auf Learnattack.de und WhatsApp mit Bildupload und Sprachnachrichten verfügbar. Ideal, um bei den Hausaufgaben und beim Lernen von Fremdsprachen zu unterstützen.
  • Viel günstiger als andere Nachhilfe und schützt deine Daten.

Verwandte Artikel

Wachstums- und Zerfallsprozesse

Hier kannst du dich selbst testen. So kannst du dich gezielt auf Prüfungen und Klausuren vorbereiten oder deine Lernerfolge kontrollieren.

Multiple-Choice-Test zum Thema "Mathematik - Wachstums und Zerfallsprozesse".

Viel Spaß beim Beantworten der Fragen!

WISSENSTEST

Darstellung geometrischer Objekte durch Differenzialgleichungen

Die Lösungen (Integrale) von Differenzialgleichungen sind Kurvenscharen. Entsprechend lassen sich Klassen von Kurven, die sich nur durch konstante Parameter unterscheiden, durch Differenzialgleichungen darstellen. Im Folgenden werden Differenzialgleichungen für geometrische Grundgebilde wie Gerade, Kreis, Parabel, Ellipse und Hyperbel angegeben.

Exponentieller Zerfall und exponentielles Wachstum

Viele Wachstums- und Zerfallsprozesse in Natur und Technik verlaufen exponentiell. Hierzu gehören u.a. das Wirtschaftswachstum, die Entwicklung von Tierpopulationen bzw. der radioaktive Zerfall. Idealisiert erfolgt eine Beschreibung dieser Prozesse meist durch die Differenzialgleichung d N d t = − λ ⋅ N .
Die Betrachtung realer Wachstumsprozesse in der Natur führt zum mathematischen Modell „Gebremstes Wachstum“. Berücksichtigt man, dass viele Prozesse nicht kontinuierlich, sondern quantenhaft verlaufen, lassen sie sich oftmals besser durch Rekursionsgleichungen beschreiben.

Differenzialgleichungen zur Beschreibung von Federschwingungen

Ein Körper, der an einer Feder befestigt ist, führt nach einer Auslenkung eine Schwingung durch. Der Ort des Körpers wird durch die zeitabhängige Ortskoordinate y(t) beschrieben, deren Gleichung gefunden werden soll.
Im Folgenden werden mit einer derartigen Anordnung gedämpfte und ungedämpfte Schwingungen untersucht.

Differenzialgleichungen zur Beschreibung des Lade- und Entladevorgangs eines Kondensators

In einem Gleichstromkreis befindet sich eine Spannungsquelle mit der Spannung U 0 ein ohmscher Widerstand R und ein Kondensator mit der Kapazität C.
Wird Spannung angelegt, so fließt über den Widerstand R ein Strom I zum Kondensator und lädt ihn auf. Dabei wächst die Kondensatorspannung U C = Q C .

Beim Stromfluss fällt am Widerstand die Spannung U R = I ⋅ R ab. Die Summe aus Spannungsabfall am ohmschen Widerstand und Kondensatorspannung ist immer gleich der Spannung der Spannungsquelle.

Es gilt also U 0 = U R + U C = I R + Q C , woraus mit I = d Q d   t folgt:
U 0 = R d Q d   t + Q C   b z w .   d Q d   t + Q R C = U 0 R

Diese Gleichung ist eine lineare inhomogene Differenzialgleichung 1. Ordnung der Form f ′ ( x ) + q   f ( x ) = s mit den Koeffizienten q = 1 R C   u n d   s = U 0 R sowie der gesuchten Funktion Q = Q ( t ) , die im Folgenden zu lösen ist.

Ein Angebot von

Footer

  • Impressum
  • Sicherheit & Datenschutz
  • AGB
© Duden Learnattack GmbH, 2025