Direkt zum Inhalt

Pfadnavigation

  1. Startseite
  2. Mathematik Abitur
  3. 8 Differenzen- und Differenzialgleichungen
  4. 8.2 Differenzialgleichungen
  5. 8.2.2 Lösungsverhalten von Differenzialgleichungen
  6. Richtungsfeld einer Differenzialgleichung

Richtungsfeld einer Differenzialgleichung

Gewöhnliche Differenzialgleichungen beschreiben Kurvenscharen in der Ebene. Eine Differenzialgleichung 1. Ordnung ordnet jedem Punkt der xy-Ebene einen Wert zu (vorausgesetzt, dass für den Punkt ein Wert definiert ist), welcher der Richtung der Tangente der Integralkurve in diesem Punkt entspricht, ein sogenanntes Linienelement.
Die Gesamtheit der Linienelemente ist das durch die Differenzialgleichung beschriebene Richtungsfeld. Das Bestimmen der Lösung der Differenzialgleichung ist das Bestimmen der Kurven, die auf dieses Richtungsfeld „passen“.

Schule wird easy mit KI-Tutor Kim und Duden Learnattack

  • Kim hat in Deutsch, Mathe, Englisch und 6 weiteren Schulfächern immer eine von Lehrkräften geprüfte Erklärung, Video oder Übung parat.
  • 24/7 auf Learnattack.de und WhatsApp mit Bildupload und Sprachnachrichten verfügbar. Ideal, um bei den Hausaufgaben und beim Lernen von Fremdsprachen zu unterstützen.
  • Viel günstiger als andere Nachhilfe und schützt deine Daten.
Jetzt 30 Tage risikofrei testen
Your browser does not support the video tag.

Durch die explizite Differenzialgleichung 1. Ordnung y ′ = f ( x , y ) sei für jeden Punkt P ( x 0 ; y 0 ) ein Wert definiert, nämlich f ( x 0 ; y 0 ) , er beschreibt den Anstieg der Integralkurve in diesem Punkt: y ′ ( x 0 ; y 0 ) = f ( x 0 ; y 0 )
Durch y ′ = c o n s t . werden Kurven mit gleichen Linienelementen (oder Richtungselementen) beschrieben, sogenannte Isoklinen oder Neigungslinien.

Beispiel: Die Differenzialgleichung ( 2 y − x 2 )   d x + d y = 0 lautet in expliziter Darstellung y ′ = x 2 − 2 y .
Isoklinen ergeben sich für y ′ = c 1 ,   a l s o   x 2 − 2 y = c 1 . Das sind die Parabeln y = 1 2 x 2 + c , also gestauchte, nach oben geöffnete Parabeln symmetrisch zur y-Achse.

  • Parabeln als Isoklinien

Die Isoklinen von y y ′ − x = 0 ergeben sich x y = c ,   y ≠ 0,   a l s o   y = x c .
Die Isoklinen sind Halbgeraden.

  • Halbgeraden als Isoklinien

y ′ = − 1 4 x y ,   y ≠ 0, soll im 1. Quadraten betrachtet werden.
Die Isoklinen sind y = − 1 4 c   x .

  • Näherung für eine Lösungskurve

Eine grobe Näherung für die Integralkurve erhielte man, wenn man einen Polygonzug dem Richtungsfeld anpasst.

Lernhelfer (Duden Learnattack GmbH): "Richtungsfeld einer Differenzialgleichung ." In: Lernhelfer (Duden Learnattack GmbH). URL: http://www.lernhelfer.de/index.php/schuelerlexikon/mathematik-abitur/artikel/richtungsfeld-einer-differenzialgleichung (Abgerufen: 30. June 2025, 07:43 UTC)

Suche nach passenden Schlagwörtern

  • Isokline
  • Richtungsfeld
  • Animation
  • Integralkurve
  • Differenzialgleichung
Jetzt durchstarten

Lernblockade und Hausaufgabenstress?

Entspannt durch die Schule mit KI-Tutor Kim und Duden Learnattack.

  • Kim hat in Deutsch, Mathe, Englisch und 6 weiteren Schulfächern immer eine von Lehrkräften geprüfte Erklärung, Video oder Übung parat.
  • 24/7 auf Learnattack.de und WhatsApp mit Bildupload und Sprachnachrichten verfügbar. Ideal, um bei den Hausaufgaben und beim Lernen von Fremdsprachen zu unterstützen.
  • Viel günstiger als andere Nachhilfe und schützt deine Daten.

Verwandte Artikel

Numerische Lösungsverfahren für Differentialgleichungen

Viele Differenzialgleichungen – auch solche 1. Ordnung – lassen sich nicht oder nur aufwendig lösen. Deshalb ist es wichtig, neben exakten auch über numerische Lösungsverfahren zu verfügen, die Näherungslösungen für Anfangswertprobleme liefern. Da sich numerische Lösungsverfahren mithilfe von Computern abarbeiten lassen, werden Differenzialgleichungen für einen immer breiteren Interessentenkreis zugänglich.

Das Runge-Kutta-Verfahren

Soll eine explizite Differenzialgleichung f ′ ( x ) = G ( x ;   f ( x ) ) mit der Anfangsbedingung f ( x 0 ) = y 0 numerisch nach dem Polygonzugverfahren gelöst werden, so benutzt man die Differenzengleichung f ¯ ( x + h ) = f ¯ ( x ) + h ⋅ G ( x ;   f ¯ ( x ) ) .

Dabei ist y ¯ = f ¯ ( x ) eine Näherung für die eigentlich gesuchte Funktion y = f ( x ) .

Bei Übergang zur Darstellung der Differenzengleichung als iterative Bildungsvorschrift ergibt sich y ¯ i   + 1 = y ¯ i + h ⋅ G ( x i ;   y ¯ i ) bzw. y ¯ i   + 1 = y ¯ i + h ⋅ m i ( p o l y )  mit m i ( p o l y ) = G ( x i ;   y ¯ i ) .

Darstellung geometrischer Objekte durch Differenzialgleichungen

Die Lösungen (Integrale) von Differenzialgleichungen sind Kurvenscharen. Entsprechend lassen sich Klassen von Kurven, die sich nur durch konstante Parameter unterscheiden, durch Differenzialgleichungen darstellen. Im Folgenden werden Differenzialgleichungen für geometrische Grundgebilde wie Gerade, Kreis, Parabel, Ellipse und Hyperbel angegeben.

Differenzialgleichungen zur Beschreibung von Federschwingungen

Ein Körper, der an einer Feder befestigt ist, führt nach einer Auslenkung eine Schwingung durch. Der Ort des Körpers wird durch die zeitabhängige Ortskoordinate y(t) beschrieben, deren Gleichung gefunden werden soll.
Im Folgenden werden mit einer derartigen Anordnung gedämpfte und ungedämpfte Schwingungen untersucht.

Differenzialgleichungen zur Beschreibung des Lade- und Entladevorgangs eines Kondensators

In einem Gleichstromkreis befindet sich eine Spannungsquelle mit der Spannung U 0 ein ohmscher Widerstand R und ein Kondensator mit der Kapazität C.
Wird Spannung angelegt, so fließt über den Widerstand R ein Strom I zum Kondensator und lädt ihn auf. Dabei wächst die Kondensatorspannung U C = Q C .

Beim Stromfluss fällt am Widerstand die Spannung U R = I ⋅ R ab. Die Summe aus Spannungsabfall am ohmschen Widerstand und Kondensatorspannung ist immer gleich der Spannung der Spannungsquelle.

Es gilt also U 0 = U R + U C = I R + Q C , woraus mit I = d Q d   t folgt:
U 0 = R d Q d   t + Q C   b z w .   d Q d   t + Q R C = U 0 R

Diese Gleichung ist eine lineare inhomogene Differenzialgleichung 1. Ordnung der Form f ′ ( x ) + q   f ( x ) = s mit den Koeffizienten q = 1 R C   u n d   s = U 0 R sowie der gesuchten Funktion Q = Q ( t ) , die im Folgenden zu lösen ist.

Ein Angebot von

Footer

  • Impressum
  • Sicherheit & Datenschutz
  • AGB
© Duden Learnattack GmbH, 2025