Direkt zum Inhalt

Pfadnavigation

  1. Startseite
  2. Mathematik Abitur
  3. 8 Differenzen- und Differenzialgleichungen
  4. 8.2 Differenzialgleichungen
  5. 8.2.2 Lösungsverhalten von Differenzialgleichungen
  6. Richtungsfeld einer Differenzialgleichung

Richtungsfeld einer Differenzialgleichung

Gewöhnliche Differenzialgleichungen beschreiben Kurvenscharen in der Ebene. Eine Differenzialgleichung 1. Ordnung ordnet jedem Punkt der xy-Ebene einen Wert zu (vorausgesetzt, dass für den Punkt ein Wert definiert ist), welcher der Richtung der Tangente der Integralkurve in diesem Punkt entspricht, ein sogenanntes Linienelement.
Die Gesamtheit der Linienelemente ist das durch die Differenzialgleichung beschriebene Richtungsfeld. Das Bestimmen der Lösung der Differenzialgleichung ist das Bestimmen der Kurven, die auf dieses Richtungsfeld „passen“.

Schule wird easy mit KI-Tutor Kim und Duden Learnattack

  • Kim hat in Deutsch, Mathe, Englisch und 6 weiteren Schulfächern immer eine von Lehrkräften geprüfte Erklärung, Video oder Übung parat.
  • 24/7 auf Learnattack.de und WhatsApp mit Bildupload und Sprachnachrichten verfügbar. Ideal, um bei den Hausaufgaben und beim Lernen von Fremdsprachen zu unterstützen.
  • Viel günstiger als andere Nachhilfe und schützt deine Daten.
Jetzt 30 Tage risikofrei testen
Your browser does not support the video tag.

Durch die explizite Differenzialgleichung 1. Ordnung y ′ = f ( x , y ) sei für jeden Punkt P ( x 0 ; y 0 ) ein Wert definiert, nämlich f ( x 0 ; y 0 ) , er beschreibt den Anstieg der Integralkurve in diesem Punkt: y ′ ( x 0 ; y 0 ) = f ( x 0 ; y 0 )
Durch y ′ = c o n s t . werden Kurven mit gleichen Linienelementen (oder Richtungselementen) beschrieben, sogenannte Isoklinen oder Neigungslinien.

Beispiel: Die Differenzialgleichung ( 2 y − x 2 )   d x + d y = 0 lautet in expliziter Darstellung y ′ = x 2 − 2 y .
Isoklinen ergeben sich für y ′ = c 1 ,   a l s o   x 2 − 2 y = c 1 . Das sind die Parabeln y = 1 2 x 2 + c , also gestauchte, nach oben geöffnete Parabeln symmetrisch zur y-Achse.

  • Parabeln als Isoklinien

Die Isoklinen von y y ′ − x = 0 ergeben sich x y = c ,   y ≠ 0,   a l s o   y = x c .
Die Isoklinen sind Halbgeraden.

  • Halbgeraden als Isoklinien

y ′ = − 1 4 x y ,   y ≠ 0, soll im 1. Quadraten betrachtet werden.
Die Isoklinen sind y = − 1 4 c   x .

  • Näherung für eine Lösungskurve

Eine grobe Näherung für die Integralkurve erhielte man, wenn man einen Polygonzug dem Richtungsfeld anpasst.

Lernhelfer (Duden Learnattack GmbH): "Richtungsfeld einer Differenzialgleichung ." In: Lernhelfer (Duden Learnattack GmbH). URL: http://www.lernhelfer.de/index.php/schuelerlexikon/mathematik-abitur/artikel/richtungsfeld-einer-differenzialgleichung (Abgerufen: 21. May 2025, 01:45 UTC)

Suche nach passenden Schlagwörtern

  • Isokline
  • Richtungsfeld
  • Animation
  • Integralkurve
  • Differenzialgleichung
Jetzt durchstarten

Lernblockade und Hausaufgabenstress?

Entspannt durch die Schule mit KI-Tutor Kim und Duden Learnattack.

  • Kim hat in Deutsch, Mathe, Englisch und 6 weiteren Schulfächern immer eine von Lehrkräften geprüfte Erklärung, Video oder Übung parat.
  • 24/7 auf Learnattack.de und WhatsApp mit Bildupload und Sprachnachrichten verfügbar. Ideal, um bei den Hausaufgaben und beim Lernen von Fremdsprachen zu unterstützen.
  • Viel günstiger als andere Nachhilfe und schützt deine Daten.

Verwandte Artikel

Differenzialgleichungen zur Beschreibung des elektromagnetischen Schwingkreises

Ein elektromagnetischer Schwingkreis ist ein geschlossener Stromkreis, in dem ein Kondensator und eine Spule (mit induktivem und ohmschem Widerstand - in der folgenden Abbildung der Übersichtlichkeit halber getrennt gezeichnet) in Reihe geschaltet sind.

Terminologie der Differenzialgleichungen

Eine Differenzialgleichung ist eine Gleichung, in der Ableitungen unbekannter Funktionen auftreten. Handelt es sich bei den Funktionen um Funktionen einer Veränderlichen, so nennt man die Differenzialgleichungen „gewöhnliche Differenzialgleichungen“, bei mehreren Veränderlichen „partielle Differenzialgleichungen“.

Beispiele für gewöhnliche Differenzialgleichungen sind x   y ′ − y + c     x = 0 oder auch y ″ = c   y .

Die Theorie der Differenzialgleichungen untersucht, ob es eine oder mehrere Funktionen gibt, die (in die Differenzialgleichung eingesetzt) diese für jeden Wert der Variablen erfüllen und wie diese Funktion bzw. diese Funktionen gefunden werden können. Für einige Typen von Differenzialgleichungen lassen sich exakte Verfahren zum Auffinden von Lösungen angeben, sonst müssen Näherungsverfahren oder numerische Verfahren verwendet werden. Für numerische Verfahren werden auf modernen Rechenanlagen leistungsfähige Programme angeboten.

Durch Differenzialgleichungen lassen sich gewisse physikalische Gesetzmäßigkeiten gut darstellen, z.B. Schwingungs- und Strömungsvorgänge.
Im Folgenden werden einige wichtige Begriffe aus der Theorie der gewöhnlichen Differenzialgleichungen erläutert.

Mathematische Darstellung elektromagnetischer Schwingungen

Die Vorgänge in einem elektromagnetischen Schwingkreis können mit verschiedenen mathematischen Hilfsmitteln untersucht werden.
Als ein effektiver Weg zur Lösung der dabei betrachteten Differenzialgleichung erweist sich hierbei das Rechnen mit komplexen Zahlen. Veränderliche Ströme und Ladungen werden mit kleinen Buchstaben, also mit i und q bezeichnet. Im Unterschied dazu bezeichnen wir die imaginäre Einheit mit j, also − 1 = j .

Numerische Lösungsverfahren für Differentialgleichungen

Viele Differenzialgleichungen – auch solche 1. Ordnung – lassen sich nicht oder nur aufwendig lösen. Deshalb ist es wichtig, neben exakten auch über numerische Lösungsverfahren zu verfügen, die Näherungslösungen für Anfangswertprobleme liefern. Da sich numerische Lösungsverfahren mithilfe von Computern abarbeiten lassen, werden Differenzialgleichungen für einen immer breiteren Interessentenkreis zugänglich.

Das Runge-Kutta-Verfahren

Soll eine explizite Differenzialgleichung f ′ ( x ) = G ( x ;   f ( x ) ) mit der Anfangsbedingung f ( x 0 ) = y 0 numerisch nach dem Polygonzugverfahren gelöst werden, so benutzt man die Differenzengleichung f ¯ ( x + h ) = f ¯ ( x ) + h ⋅ G ( x ;   f ¯ ( x ) ) .

Dabei ist y ¯ = f ¯ ( x ) eine Näherung für die eigentlich gesuchte Funktion y = f ( x ) .

Bei Übergang zur Darstellung der Differenzengleichung als iterative Bildungsvorschrift ergibt sich y ¯ i   + 1 = y ¯ i + h ⋅ G ( x i ;   y ¯ i ) bzw. y ¯ i   + 1 = y ¯ i + h ⋅ m i ( p o l y )  mit m i ( p o l y ) = G ( x i ;   y ¯ i ) .

Ein Angebot von

Footer

  • Impressum
  • Sicherheit & Datenschutz
  • AGB
© Duden Learnattack GmbH, 2025