Direkt zum Inhalt

Pfadnavigation

  1. Startseite
  2. Physik
  3. 3 Wärmelehre
  4. 3.3 Aggregatzustandsänderungen
  5. 3.3.0 Aggregatzustandsänderungen
  6. Aggregatzustände

Aggregatzustände

Fast alle Stoffe können fest, flüssig oder gasförmig sein. Man spricht vom festen, flüssigen und gasförmigen Aggregatzustand. In welchem Aggregatzustand ein Stoff vorliegt, hängt von der Temperatur und auch vom Druck ab.
Durch Zufuhr oder Abgabe von Wärme oder durch Veränderung des Druckes kann sich der Aggregatzustand eines Stoffes ändern. Die verschiedenen Aggregatzustandsänderungen haben spezielle Bezeichnungen: Schmelzen und Erstarren, Sieden und Kondensieren, Sublimieren und Resublimieren, Verdunsten und Verdampfen.

Schule wird easy mit KI-Tutor Kim und Duden Learnattack

  • Kim hat in Deutsch, Mathe, Englisch und 6 weiteren Schulfächern immer eine von Lehrkräften geprüfte Erklärung, Video oder Übung parat.
  • 24/7 auf Learnattack.de und WhatsApp mit Bildupload und Sprachnachrichten verfügbar. Ideal, um bei den Hausaufgaben und beim Lernen von Fremdsprachen zu unterstützen.
  • Viel günstiger als andere Nachhilfe und schützt deine Daten.
Jetzt 30 Tage risikofrei testen
Your browser does not support the video tag.

Fast alle Stoffe können fest, flüssig oder gasförmig sein. Man spricht vom festen, flüssigen und gasförmigen Aggregatzustand. In welchem Aggregatzustand ein Stoff vorliegt, hängt von der Temperatur und auch vom Druck ab.
Durch Zufuhr oder Abgabe von Wärme oder durch Veränderung des Druckes kann sich der Aggregatzustand eines Stoffes ändern. Die verschiedenen Aggregatzustandsänderungen haben spezielle Bezeichnungen:

  • Schmelzen und Erstarren,
     
  • Sieden und Kondensieren,
     
  • Sublimieren und Resublimieren,
     
  • Verdunsten und Verdampfen.

Für alle Änderungen gilt:

  • Während einer Aggregatzustandsänderung bleibt die Temperatur des betreffenden Körpers gleich.
     
  • Während einer Aggregatzustandsänderung ändert sich die thermische Energie eines Körpers.
     
  • Mit einer Aggregatzustandsänderung verändert sich zumeist auch das Volumen des Körpers.
Lernhelfer (Duden Learnattack GmbH): "Aggregatzustände." In: Lernhelfer (Duden Learnattack GmbH). URL: http://www.lernhelfer.de/index.php/schuelerlexikon/physik/artikel/aggregatzustaende (Abgerufen: 20. May 2025, 23:21 UTC)

Suche nach passenden Schlagwörtern

  • Resublimieren
  • Verdampfen
  • Kondensieren
  • Aggregatzustände
  • Aggregatzustand
  • thermische Energie
  • Erstarren
  • Sublimieren
  • Temperatur
  • Verdunsten
  • Aggregatzustandsänderung
  • Schmelzen
  • Volumen
  • Sieden
Jetzt durchstarten

Lernblockade und Hausaufgabenstress?

Entspannt durch die Schule mit KI-Tutor Kim und Duden Learnattack.

  • Kim hat in Deutsch, Mathe, Englisch und 6 weiteren Schulfächern immer eine von Lehrkräften geprüfte Erklärung, Video oder Übung parat.
  • 24/7 auf Learnattack.de und WhatsApp mit Bildupload und Sprachnachrichten verfügbar. Ideal, um bei den Hausaufgaben und beim Lernen von Fremdsprachen zu unterstützen.
  • Viel günstiger als andere Nachhilfe und schützt deine Daten.

Verwandte Artikel

Innere Energie

Die innere Energie gibt an, wie groß die in einem abgeschlossenen System (Körper) gespeicherte Energie ist.
Formelzeichen: U
Einheit: ein Joule (1 J)
Sie ist die Gesamtenergie aller Teilchen (Atome, Moleküle) eines Körpers und setzt sich damit aus der Summe der Bewegungsenergien bei Translation, Rotation und Schwingungen, der potenziellen Energien und der Bindungsenergien zusammen.
Bei Gasen wird die innere Energie im Wesentlichen von den Bewegungsenergien der Teilchen bestimmt.

BOSE-EINSTEIN-Kondensat - der 5. Aggregatzustand

Die BOSE-EINSTEIN-Kondensation, benannt nach dem indischen Physiker SATYENDRA NATH BOSE (1894-1974) und dem deutschen Physiker ALBERT EINSTEIN (1879-1955), ist ein quantenstatistisches Phänomen. Kühlt man z.B. Rubidiumatome auf sehr niedrige Temperaturen ab, dann kommt es zu einem rein quantenmechanischen Phasenübergang, bei dem Wechselwirkungen keine Rolle mehr spielen und alle Atome dieselben physikalischen Eigenschaften haben – sie geben gleichsam ihre Identität auf und verhalten sich alle wie ein einziges Superatom. Die Existenz eines solchen Zustandes wurde erstmals 1925 von ALBERT EINSTEIN vorhergesagt. Der experimentelle Nachweis gelang zum ersten Mal 1995.

Erster Hauptsatz der Thermodynamik

Der 1. Hauptsatz der Thermodynamik ist der Energieerhaltungssatz, formuliert für thermodynamische Prozesse. Die heute bekannte mathematische Formulierung des 1. Hauptsatzes der Thermodynamik stammt von RUDOLF CLAUSIUS und wurde von ihm um 1850 so formuliert:

Die einem thermodynamischen System zugeführte Wärme ist gleich der Summe aus der Änderung der inneren Energie des Systems und der von ihm verrichteten mechanischen Arbeit.

Δ U = W + Q Δ U Änderung der inneren Energie des Systems W vom System oder am System verrrichtet mechanische Arbeit (Volumenarbeit) Q vom System aufgenommene oder abgegebene Wärme

Eine andere übliche Formulierung des 1. Hauptsatzes der Thermodynamik lautet:
Es ist unmöglich, eine Perpetuum mobile 1. Art zu konstruieren.

Phasenumwandlungen

Unter einer Phasenumwandlung versteht man den Übergang eines Stoffes von einem Zustand in einen anderen. Dabei ist zwischen verschiedenen Arten zu unterscheiden. Phasenumwandlungen 1. Art sind dadurch gekennzeichnet, dass bei den Umwandlungen Wärme erforderlich ist oder frei wird. Zu dieser Art der Phasenumwandlungen gehören alle Aggregatzustandsänderungen. Daneben gibt es auch Phasenumwandlungen 2. Art, bei denen keine Umwandlungswärmen auftreten. Zu solchen Phasenumwandlungen gehört z.B. der Übergang eines Stoffes aus dem normalleitenden in den supraleitenden Zustand.

Grundgleichung der Wärmelehre

Unter der Bedingung, dass keine Änderung des Aggregatzustandes erfolgt, gilt für die einem Körper zugeführte oder von ihm abgegebene Wärme:

Q = c ⋅ m ⋅ Δ ϑ oder Q = c ⋅ m ⋅ Δ T c spezifische Wärmekapazität m Masse des Körpers Δ ϑ ,   Δ T Temperaturänderung des Körpers

Die Stoffkonstante spezifische Wärmekapazität, insbesondere die von Wasser, hat erhebliche Bedeutung für Natur und Technik, da in Wasser eine erhebliche Wärme gespeichert und mit ihm transportiert werden kann.

Ein Angebot von

Footer

  • Impressum
  • Sicherheit & Datenschutz
  • AGB
© Duden Learnattack GmbH, 2025