Direkt zum Inhalt

Pfadnavigation

  1. Startseite
  2. Physik
  3. 4 Elektrizitätslehre
  4. 4.3 Elektrische und magnetische Felder
  5. 4.3.1 Das elektrische Feld
  6. Energie des elektrischen Feldes

Energie des elektrischen Feldes

Die bei einer Ladungstrennung aufgewandte Arbeit ist als Energie im elektrischen Feld zwischen den Ladungen gespeichert. Diese elektrische Feldenergie bezeichnet man häufig auch kurz als elektrische Energie.

Formelzeichen:
Einheiten:
E e l
1 Wattsekunde (1 W ⋅ s ) oder 1 Joule (1 J)

 

Schule wird easy mit KI-Tutor Kim und Duden Learnattack

  • Kim hat in Deutsch, Mathe, Englisch und 6 weiteren Schulfächern immer eine von Lehrkräften geprüfte Erklärung, Video oder Übung parat.
  • 24/7 auf Learnattack.de und WhatsApp mit Bildupload und Sprachnachrichten verfügbar. Ideal, um bei den Hausaufgaben und beim Lernen von Fremdsprachen zu unterstützen.
  • Viel günstiger als andere Nachhilfe und schützt deine Daten.
Jetzt 30 Tage risikofrei testen
Your browser does not support the video tag.

Die bei einer Ladungstrennung aufgewandte Arbeit ist als Energie im elektrischen Feld zwischen den Ladungen gespeichert. Diese elektrische Feldenergie bezeichnet man häufig auch kurz als elektrische Energie.

Formelzeichen:
Einheiten:

E e l
1 Wattsekunde (1 W ⋅ s ) oder 1 Joule (1 J)

Die Berechnung der elektrischen Energie

Hat man mechanische Arbeit aufgewandt, um ungleichnamige Ladungen zu trennen, dann sind diese Ladungsträger bei ihrer Zusammenführung nun ihrerseits in der Lage, eine Arbeit zu verrichten. Zwei ungleichnamig geladene Kugeln können zum Beispiel mechanische Arbeit verrichten, wenn sie sich aus größerer Entfernung aufeinander zu bewegen und beim Aufprall verformen.
Zur Berechnung der elektrischen Energie geht man von der Arbeit aus, die zur Ladungstrennung erforderlich ist. Nach dem Energieerhaltungssatz ist diese Arbeit genau so groß, wie die im elektrischen Feld gespeicherte Energie.

  • elektrostatische Anziehung

Für den Plattenkondensator ist die Berechnung der elektrischen Energie besonders einfach.
Um im Kondensator ein elektrisches Feld aufzubauen, muss man einer Kondensatorplatte nacheinander Elementarladungen e entnehmen und auf die andere Platte verschieben.

Für die Verschiebungsarbeit einer Ladung e zwischen zwei Kondensatorplatten gilt:

W = e ⋅ U

Allerdings ist bei der Berechnung folgender Umstand zu berücksichtigen:
Da der Kondensator im Ausgangszustand noch gar nicht geladen ist, beträgt die Spannung zwischen den Platten bei der ersten Ladungsverschiebung U=0 und demzufolge auch die elektrische Arbeit W=0. Erst wenn man die letzte Ladung e auf die andere Kondensatorplatte bringt, hat sich zwischen den Platten fast schon die volle Spannung U aufgebaut. Dies bedeutet: Für die Berechnung der gesamten Verschiebungsarbeit, darf man nicht die obige Gleichung verwenden, sondern muss von der mittleren Verschiebungsarbeit der Ladungen ausgehen. Diese ist aus dem Mittelwert aller Einzelverschiebungen zu berechnen. Dieser Mittelwert beträgt:

W = 1 2 ⋅ e ⋅ U

Die Gesamtarbeit und damit auch die Energie des elektrischen Feldes ist die Summe aller Einzelverschiebungen:

E = 1 2 ⋅ e ⋅ U + ... + 1 2 ⋅ e ⋅ U = 1 2 ⋅ Q ⋅ U

Ersetzt man in der Berechnungsgleichung die Ladung der Kondensatorplatten durch ihre elektrische Kapazität, dann gilt für die Feldenergie:

E = 1 2 ⋅ C ⋅ U 2

Diese Gleichung gilt für beliebige Formen von Kondensatoren.

  • Ladungsverschiebung zwischen zwei Kondensatorplatten
Lernhelfer (Duden Learnattack GmbH): "Energie des elektrischen Feldes." In: Lernhelfer (Duden Learnattack GmbH). URL: http://www.lernhelfer.de/index.php/schuelerlexikon/physik/artikel/energie-des-elektrischen-feldes (Abgerufen: 20. May 2025, 18:27 UTC)

Suche nach passenden Schlagwörtern

  • elektrische Kapazität
  • elektrisches Feld
  • Plattenkondensator
  • Elementarladung
  • Energieerhaltungssatz
  • Verschiebungsarbeit
  • Mechanische Arbeit
  • Energie des elektrischen Feldes
  • elektrische Feldenergie
Jetzt durchstarten

Lernblockade und Hausaufgabenstress?

Entspannt durch die Schule mit KI-Tutor Kim und Duden Learnattack.

  • Kim hat in Deutsch, Mathe, Englisch und 6 weiteren Schulfächern immer eine von Lehrkräften geprüfte Erklärung, Video oder Übung parat.
  • 24/7 auf Learnattack.de und WhatsApp mit Bildupload und Sprachnachrichten verfügbar. Ideal, um bei den Hausaufgaben und beim Lernen von Fremdsprachen zu unterstützen.
  • Viel günstiger als andere Nachhilfe und schützt deine Daten.

Verwandte Artikel

Elektrisches Feld der Erde

Neben einem magnetischen Feld besitzt die Erde auch ein elektrisches Feld. Da die Erdoberfläche negativ gegenüber der umgebenden Atmosphäre geladen ist, verlaufen die Feldlinien im Idealfall senkrecht zur Erdoberfläche und von dieser weg. Das elektrische Feld der Erde kann näherungsweise als Radialfeld angesehen werden. Die Feldstärke beträgt in Erdbodennähe im Durchschnitt 130 V/m. Durch Bebauung, Bäume und natürliche Unebenheiten treten erhebliche Deformationen des elektrischen Feldes der Erde auf, die durchaus auch von praktischer Bedeutung sind, etwa im Hinblick auf den Blitzschutz und das Auftreten weiterer luftelektrischer Erscheinungen wie Elmsfeuer.

Energie des elektrischen Stromes

Die elektrische Energie ist die Fähigkeit des elektrischen Stromes, mechanische Arbeit zu verrichten, Wärme abzugeben oder Licht auszusenden.

Formelzeichen:
Einheiten:
E el
ein Joule (1 J)
eine Wattsekunde (1 Ws)


Es ist eine Energieform neben solchen Energieformen, wie mechanische, chemische, thermische, magnetische oder Kernenergie.

Elektrisches Potenzial und elektrische Spannung

Ähnlich wie beim Gravitationsfeld wird auch beim elektrischen Feld ein Potenzial definiert. Unter dem elektrischen Potenzial eines Punktes versteht man den Quotienten aus der potenziellen Energie in diesem Punkt und der Ladung des Körpers. Sein Betrag hängt nur vom Ort und von der felderzeugenden Ladung ab. Das Potenzial ist demzufolge geeignet, ein Feld zu beschreiben. Das kann auch grafisch mit Äquipotenziallinien in der Ebene oder Äquipotenzialflächen im Raum erfolgen.
Die elektrische Spannung zwischen zwei beliebigen Punkten eines elektrischen Feldes ist gleich der Potenzialdifferenz zwischen diesen beiden Punkten.

Elektrische Leistung

Die elektrische Leistung gibt an, wie viel elektrische Arbeit der elektrische Strom in jeder Sekunde verrichtet bzw. wie viel elektrische Energie in andere Energieformen umgewandelt wird.

Formelzeichen:
Einheit:
P
ein Watt ( 1 W)

Benannt ist die Einheit der Leistung nach dem schottischen Techniker JAMES WATT.

Feldstärke und dielektrische Verschiebung

Elektrische Felder können mithilfe von Feldlinienbildern beschrieben werden. Zur ihrer quantitativen Beschreibung nutzt man die feldbeschreibenden Größen elektrische Feldstärke und dielektrische Verschiebung. Die elektrische Feldstärke E ist definiert als Quotient aus der Kraft F, die das Feld auf einen positiv geladenen Probekörper ausübt, und dessen Ladung Q:
E → = F → Q
Die dielektrische Verschiebung D (Verschiebungsdichte) ist ein Maß für die auf einer Fläche im elektrischen Feld durch Influenz hervorgerufenen Ladung:
D = Q A
Beide Größen sind durch die elektrische Feldkonstante und die Permittivitätszahl miteinander verbunden:
D → = ε 0 ⋅ ε r ⋅ E →
Bevorzugt wird mit der elektrischen Feldstärke gearbeitet.

Ein Angebot von

Footer

  • Impressum
  • Sicherheit & Datenschutz
  • AGB
© Duden Learnattack GmbH, 2025