Direkt zum Inhalt

Pfadnavigation

  1. Startseite
  2. Physik
  3. 4 Elektrizitätslehre
  4. 4.3 Elektrische und magnetische Felder
  5. 4.3.1 Das elektrische Feld
  6. Energie des elektrischen Feldes

Energie des elektrischen Feldes

Die bei einer Ladungstrennung aufgewandte Arbeit ist als Energie im elektrischen Feld zwischen den Ladungen gespeichert. Diese elektrische Feldenergie bezeichnet man häufig auch kurz als elektrische Energie.

Formelzeichen:
Einheiten:
E e l
1 Wattsekunde (1 W ⋅ s ) oder 1 Joule (1 J)

 

Schule wird easy mit KI-Tutor Kim und Duden Learnattack

  • Kim hat in Deutsch, Mathe, Englisch und 6 weiteren Schulfächern immer eine von Lehrkräften geprüfte Erklärung, Video oder Übung parat.
  • 24/7 auf Learnattack.de und WhatsApp mit Bildupload und Sprachnachrichten verfügbar. Ideal, um bei den Hausaufgaben und beim Lernen von Fremdsprachen zu unterstützen.
  • Viel günstiger als andere Nachhilfe und schützt deine Daten.
Jetzt 30 Tage risikofrei testen
Your browser does not support the video tag.

Die bei einer Ladungstrennung aufgewandte Arbeit ist als Energie im elektrischen Feld zwischen den Ladungen gespeichert. Diese elektrische Feldenergie bezeichnet man häufig auch kurz als elektrische Energie.

Formelzeichen:
Einheiten:

E e l
1 Wattsekunde (1 W ⋅ s ) oder 1 Joule (1 J)

Die Berechnung der elektrischen Energie

Hat man mechanische Arbeit aufgewandt, um ungleichnamige Ladungen zu trennen, dann sind diese Ladungsträger bei ihrer Zusammenführung nun ihrerseits in der Lage, eine Arbeit zu verrichten. Zwei ungleichnamig geladene Kugeln können zum Beispiel mechanische Arbeit verrichten, wenn sie sich aus größerer Entfernung aufeinander zu bewegen und beim Aufprall verformen.
Zur Berechnung der elektrischen Energie geht man von der Arbeit aus, die zur Ladungstrennung erforderlich ist. Nach dem Energieerhaltungssatz ist diese Arbeit genau so groß, wie die im elektrischen Feld gespeicherte Energie.

  • elektrostatische Anziehung

Für den Plattenkondensator ist die Berechnung der elektrischen Energie besonders einfach.
Um im Kondensator ein elektrisches Feld aufzubauen, muss man einer Kondensatorplatte nacheinander Elementarladungen e entnehmen und auf die andere Platte verschieben.

Für die Verschiebungsarbeit einer Ladung e zwischen zwei Kondensatorplatten gilt:

W = e ⋅ U

Allerdings ist bei der Berechnung folgender Umstand zu berücksichtigen:
Da der Kondensator im Ausgangszustand noch gar nicht geladen ist, beträgt die Spannung zwischen den Platten bei der ersten Ladungsverschiebung U=0 und demzufolge auch die elektrische Arbeit W=0. Erst wenn man die letzte Ladung e auf die andere Kondensatorplatte bringt, hat sich zwischen den Platten fast schon die volle Spannung U aufgebaut. Dies bedeutet: Für die Berechnung der gesamten Verschiebungsarbeit, darf man nicht die obige Gleichung verwenden, sondern muss von der mittleren Verschiebungsarbeit der Ladungen ausgehen. Diese ist aus dem Mittelwert aller Einzelverschiebungen zu berechnen. Dieser Mittelwert beträgt:

W = 1 2 ⋅ e ⋅ U

Die Gesamtarbeit und damit auch die Energie des elektrischen Feldes ist die Summe aller Einzelverschiebungen:

E = 1 2 ⋅ e ⋅ U + ... + 1 2 ⋅ e ⋅ U = 1 2 ⋅ Q ⋅ U

Ersetzt man in der Berechnungsgleichung die Ladung der Kondensatorplatten durch ihre elektrische Kapazität, dann gilt für die Feldenergie:

E = 1 2 ⋅ C ⋅ U 2

Diese Gleichung gilt für beliebige Formen von Kondensatoren.

  • Ladungsverschiebung zwischen zwei Kondensatorplatten
Lernhelfer (Duden Learnattack GmbH): "Energie des elektrischen Feldes." In: Lernhelfer (Duden Learnattack GmbH). URL: http://www.lernhelfer.de/index.php/schuelerlexikon/physik/artikel/energie-des-elektrischen-feldes (Abgerufen: 12. August 2025, 03:12 UTC)

Suche nach passenden Schlagwörtern

  • elektrische Kapazität
  • elektrisches Feld
  • Plattenkondensator
  • Elementarladung
  • Energieerhaltungssatz
  • Verschiebungsarbeit
  • Mechanische Arbeit
  • Energie des elektrischen Feldes
  • elektrische Feldenergie
Jetzt durchstarten

Lernblockade und Hausaufgabenstress?

Entspannt durch die Schule mit KI-Tutor Kim und Duden Learnattack.

  • Kim hat in Deutsch, Mathe, Englisch und 6 weiteren Schulfächern immer eine von Lehrkräften geprüfte Erklärung, Video oder Übung parat.
  • 24/7 auf Learnattack.de und WhatsApp mit Bildupload und Sprachnachrichten verfügbar. Ideal, um bei den Hausaufgaben und beim Lernen von Fremdsprachen zu unterstützen.
  • Viel günstiger als andere Nachhilfe und schützt deine Daten.

Verwandte Artikel

Widerstände in Stromkreisen

Der elektrische Widerstand eines Bauelementes oder Gerätes gibt an, welche Spannung für einen elektrischen Strom der Stärke 1 A erforderlich ist. Er wird in der Einheit Ohm ( 1 Ω ) gemessen.
Befinden sich in einem Stromkreis mit einer elektrischen Quelle mehrere Bauelemente (Widerstände, Glühlampen, Spulen, ...), so können diese in Reihe oder parallel zueinander geschaltet sein. Der Gesamtwiderstand der Schaltung hängt von der Art der Schaltung und vom elektrischen Widerstand der betreffenden Bauelemente ab.

Elektrischer Widerstand

Der elektrische Widerstand eines Bauteils gibt an, wie stark der elektrische Strom in ihm behindert wird.

Formelzeichen:
Einheit:
R
ein Ohm (1 Ω )

Definiert ist der elektrische Widerstand als der Quotient aus elektrischer Spannung und elektrischer Stromstärke:

R = U I U Spannung am Bauteil I Stromstärke durch das Bauteil

Diese Gleichung wird auch als ohmsches Gesetz bezeichnet.

Arbeit und Energie im elektrischen Feld

Befinden sich elektrisch geladene Körper oder Teilchen im elektrischen Feld und sind sie frei beweglich, so wirkt auf sie eine Feldkraft, die Arbeit an diesen Körpern bzw. Teilchen verrichtet. Will man umgekehrt geladene Körper oder Teilchen im Feld bewegen, so muss Arbeit verrichtet werden, wenn die Bewegung entgegen der Feldkraft erfolgen soll. Die erforderliche Feldkraft kann bei einfachen Feldformen berechnet werden.
Wird an geladenen Körpern oder Teilchen mechanische Arbeit verrichtet, so ändert sich ihre Energie. Dabei gilt für den Zusammenhang zwischen Arbeit und Energie der allgemeine Zusammenhang W = Δ E .

Blitze und Blitzschutzanlagen

Blitze sind elektrische Entladungen zwischen Wolken bzw. zwischen einer Wolke und der Erdoberfläche. Die mittlere Stromstärke beträgt ca. 40.000 A bei einem Durchmesser der Blitze von 10 bis 20 cm, ihre Länge meist 2 bis 3 km und ihre Dauer weniger als 1 s. Weltweit werden 70 bis 100 Blitze in jeder Sekunde registriert.
Blitze können erhebliche Schäden hervorrufen. Um sich vor solchen Schäden zu schützen, werden in gefährdeten Gebieten an Gebäuden Blitzschutzanlagen angebracht. Vor Blitzen geschützt ist auch ein von Metall umgebener Raum, etwa eine Pkw-Karosserie. Sie wirkt wie ein FARADAY-Käfig. Elektronische Geräte oder Kabel werden durch eine metallische Ummantelung vor starken elektrischen Feldern abgeschirmt.

Charles Augustin de Coulomb

* 14.06.1736 in Angouleme (Südfrankreich)
† 23.08.1806 in Paris

COULOMB war französischer Physiker, der sich große Verdienste um die Entwicklung der Elektrizitätslehre erworben hat. Er entdeckte u.a. das coulombsche Gesetz, das eine quantitative Aussage über die Kraftwirkung auf geladene Körper im elektrischen Feld gestattet. Damit und mit anderen Untersuchungen führte maßgeblich quantitative Betrachtungen in die Elektrizitätslehre ein und knüpfte damit an NEWTONs Vorgehen an.

Ein Angebot von

Footer

  • Impressum
  • Sicherheit & Datenschutz
  • AGB
© Duden Learnattack GmbH, 2025