Direkt zum Inhalt

Pfadnavigation

  1. Startseite
  2. Physik
  3. 2 Mechanik
  4. 2.5 Mechanische Schwingungen und Wellen
  5. 2.5.1 Mechanische Schwingungen
  6. Federschwinger

Federschwinger

Ein Federschwinger oder Federpendel ist ein einfacher mechanischer Schwinger, bei dem ein an einer elastischen Feder befestigter Körper, der näherungsweise als punktförmig angesehen werden kann, in einer Richtung hin- und herschwingt.
Die Schwingungsdauer (Periodendauer) eines solchen Federschwingers hängt ab von der Masse des Pendelkörpers und von den elastischen Eigenschaften der Feder.

Schule wird easy mit KI-Tutor Kim und Duden Learnattack

  • Kim hat in Deutsch, Mathe, Englisch und 6 weiteren Schulfächern immer eine von Lehrkräften geprüfte Erklärung, Video oder Übung parat.
  • 24/7 auf Learnattack.de und WhatsApp mit Bildupload und Sprachnachrichten verfügbar. Ideal, um bei den Hausaufgaben und beim Lernen von Fremdsprachen zu unterstützen.
  • Viel günstiger als andere Nachhilfe und schützt deine Daten.
Jetzt 30 Tage risikofrei testen
Your browser does not support the video tag.

Ein Federschwinger oder Federpendel ist ein einfacher mechanischer Schwinger, bei dem ein an einer elastischen Feder befestigter Körper in einer Richtung hin- und herschwingt. Man unterscheidet zwischen vertikalen und horizontalen Federschwingern (Bild 1).
Beispiele für schwingende Körper, die man vereinfacht als Federschwinger betrachten kann, sind Federungen von Autos und Motorrädern, ein Kranseil mit einer angehängten Last, eine Stimmgabel oder ein Trampolin mit Springer.

Schwingungsdauer und Frequenz eines Federschwingers

Die Schwingungsdauer (Periodendauer) eines Federschwingers hängt ab von der Masse des Pendelkörpers und von den elastischen Eigenschaften der Feder.

Für die Schwingungsdauer eines Federschwingers gilt:

T = 2 π ⋅ m D                      m      Masse des schwingenden Körpers                      D      Federkonstante der Feder

Beachte:Die Ausdehnung der Feder hat keinen Einfluss auf die Schwingungsdauer, wenn man sich im elastischen Bereich der Feder befindet, also in dem Bereich, in dem das hookesche Gesetz gilt.

Da zwischen der Schwingungsdauer und der Frequenz der Zusammenhang

T = 1 f      bzw .       f = 1 T

besteht, erhält man für die Frequenz eines Federschwingers die Gleichung:

f = 1 2 π D m

Kennzeichnung der Schwingung eines Federschwingers

Im elastischen Bereich der Feder führt ein Federschwinger harmonische Schwingungen oder sinusförmige Schwingungen aus.
Wird der Pendelkörper nur einmal ausgelenkt, so verringert sich allmählich infolge des Luftwiderstandes und anderer Reibungseffekte die Amplitude. Die Schwingung ist dann gedämpft.
Bei einem Federschwinger wird ständig potenzielle in kinetische Energie umgewandelt und umgekehrt. Durch Reibung verringert sich die mechanische Energie allmählich.
Die rücktreibenden Kräfte sind jeweils elastische Kräfte der Feder bzw. die Gewichtskraft (Bild 2).

Lernhelfer (Duden Learnattack GmbH): "Federschwinger." In: Lernhelfer (Duden Learnattack GmbH). URL: http://www.lernhelfer.de/index.php/schuelerlexikon/physik/artikel/federschwinger (Abgerufen: 20. May 2025, 20:43 UTC)

Suche nach passenden Schlagwörtern

  • Federpendel
  • Berechnungstool
  • harmonische Schwingungen
  • interaktives Experiment
  • rücktreibende Kräfte
  • sinusförmige Schwingungen
  • Frequenz
  • Federschwinger
  • Periodendauer
  • Simulation
  • Schwingungsdauer
  • Animation
  • mechanischer Schwinger
Jetzt durchstarten

Lernblockade und Hausaufgabenstress?

Entspannt durch die Schule mit KI-Tutor Kim und Duden Learnattack.

  • Kim hat in Deutsch, Mathe, Englisch und 6 weiteren Schulfächern immer eine von Lehrkräften geprüfte Erklärung, Video oder Übung parat.
  • 24/7 auf Learnattack.de und WhatsApp mit Bildupload und Sprachnachrichten verfügbar. Ideal, um bei den Hausaufgaben und beim Lernen von Fremdsprachen zu unterstützen.
  • Viel günstiger als andere Nachhilfe und schützt deine Daten.

Verwandte Artikel

Klang: Physikalische Aspekte

Auf dem Gebiet des Klanges gibt es eine starke Verbindung von Musik und Physik. Ausgangspunkt der Betrachtung ist dabei die sogenannte Obertonreihe, welche beschreibt, dass ein Klang sich aus mehreren Einzeltönen aufbaut, die in bestimmten physikalischen Zusammenhängen stehen.

Die wohl wichtigste Obertonreihe ist die Naturtonreihe, die sich aus Obertönen zusammensetzt, welche von der Frequenz her ein ganzzahlig Vielfaches des Grundtones bilden. Dadurch ist der Bau einer ganzen Reihe von Instrumenten überhaupt erst möglich. Auch die Spieltechnik baut darauf auf.

Ebenfalls mit der Physik im Bereiche kleinster Frequenzunterschiede hat man es beim Stimmen von Instrumenten zu tun. Verschiedene Stimmungen wurden über die Jahrhunderte verwendet, keine aber hat nur klangliche Vorteile.

Musikhören und Musikmachen

Während die mechanischen Vorgänge im Ohr durch anatomische Untersuchungen heute genau bekannt sind, ist man bei der Erforschung der Wirkung von Musik im Gehirn auf Experimente angewiesen, und viele Phänomene sind noch nicht erforscht. Die noch junge Wissenschaft der Psychoakustik beschäftigt sich mit folgenden Fragen:

  • Wie nimmt der Mensch Musik wahr, und wie wirkt sie auf ihn?
  • Welche Leistungen vollbringt das Gehirn beim Musikmachen?

Bau und Funktion des Ohres

Das Ohr besteht aus Außenohr (Ohrmuschel, Gehörgang), Mittelohr (Trommelfell, Gehörknöchelchen) und Innenohr (Schnecke als Hörsinnesorgan, Vorhof und Bogengänge als Gleichgewichtsorgan). Mittel- und Innenohr liegen geschützt im knöchernen Schädel.

Musik und Raumakustik

Überall da, wo nicht nur das Aussehen eines Raumes eine Rolle spielt, sondern auch der Klang im Raum, kommt ein Teilbereich der Akustik zum Tragen – die Raumakustik.

Vor allem im Laufe der letzten 80 Jahre hat man zahlreiche Erfahrungen im Umgang mit Bauformen und Materialien in Bezug auf klangverändernde Eigenschaften gesammelt. Gleichzeitig wurden Methoden entwickelt, um die Raumakustik entsprechend den Bedürfnissen anzupassen.

Ein zentraler Begriff innerhalb der Raumakustik ist der Nachhall, der zusammen mit den zugehörigen Erstreflexionen und dem Direktschall den Gesamtklang eines Raumes ergibt. Aus verschiedenen Gründen greift man heute nicht selten auch auf künstlichen Nachhall zurück. Die Anwendungsbereiche hierzu sind vielfältig.

Stehende Wellen

Wellen breiten sich von einem Erreger aus in den Raum hinein aus. Man spricht deshalb manchmal auch von fortschreitenden Wellen. Werden sie an Hindernissen reflektiert, so können sich die hin- und rücklaufenden Wellen überlagern. Es kommt zur Ausbildung einer stehenden Welle, bei der sich Schwingungsknoten und Schwingungsbäuche stets an der gleichen Stellen befinden.

Ein Angebot von

Footer

  • Impressum
  • Sicherheit & Datenschutz
  • AGB
© Duden Learnattack GmbH, 2025