Direkt zum Inhalt

1168 Suchergebnisse

Alle Filter zurücksetzen
Artikel lesen

Wasserhärte

Die Härte des Wassers entsteht durch gelöste Salze. In natürlichen Wässern sind das vor allem Magnesium- und Calciumhydrogencarbonat und -sulfat die aus dem Boden gelöst wurden. Je mehr Salze im Wasser gelöst sind desto härter ist das Wasser. Die Wasserhärte ist je nach Beschaffenheit des Bodens von Region zu Region verschieden.

Man unterscheidet dabei zwischen permanenter Härte und temporärer Härte. Die temporäre Härte wird durch den Gehalt an Hydrogencarbonaten verursacht und kann durch Erhitzen entfernt werden. Die permanente Härte wird durch die Sulfate verursacht und bleibt beim Erhitzen unverändert.

Als Maß für die Wasserhärte galt früher in Deutschland das „Grad deutscher Härte“– °dH. Inzwischen gibt man die Wasserhärte allerdings durch die Konzentration der Erdalkaliionen in mmol/l an.

Artikel lesen

Natrium

Natrium ist ein auf frischer Schnittfläche silberweißes, weiches Alkalimetall. Es ist sehr reaktiv und reagiert spontan u. a. mit Luftsauerstoff und Wasser. Natrium bildet ionische, meist gut in Wasser lösliche, Verbindungen, von denen z. B. Natriumchlorid (Steinsalz) und Natriumcarbonat in riesigen Lagerstätten in der Natur vorkommen. Die Gewinnung des Metalls erfolgt durch Schmelzflusselektrolyse.

Artikel lesen

Neodymium

Neodym ist ein silberweißes Metall. Als 3. Element der Gruppe der Lanthanoide werden von den 6 Außenelektronen, [Xe] 4f4 6s2, bei chemischen Reaktionen nur 3, in Ausnahmefällen 4, abgegeben, so dass Neodym überwiegend blauviolette Neodym(III)-Verbindungen bildet. Aus NdF3 kann durch Reduktion mit Calcium das Metall gewonnen werden, das als Legierungsbestandteil die Festigkeit von Magnesiumlegierungen erhöht. Verschiedene Verbindungen, wie das Oxid, Nd2O3, werden in der Glasindustrie und der optischen Industrie genutzt.

Artikel lesen

Neon

Neon ist ein reaktionsträges Edelgas von dem noch keine stabilen Verbindungen bekannt sind. Es wird durch fraktionierte Destillation verflüssigter Luft gewonnen (Linde-Verfahren) und u. a. in der Kälte- und Leuchttechnik eingesetzt.

Artikel lesen

Neptunium

Neptunium ist das 4. Element der Gruppe der Actinoide und damit das 1. Transuran-Element. Das radioaktive, dehnbare, silberweiß glänzende und reaktionsfähige Schwermetall bildet Verbindungen mit den Oxidationszahlen III bis VII. 237Np lässt sich aus Kernabbränden isolieren und aus NpF3 mit Barium metallothermisch gewinnen. In verdünnten Säuren löst sich das Metall unter Bildung purpurfarbener Np(III)-Ionen, die durch Luftsauerstoff in grüne Np(IV)-Lösungen übergeführt werden. Mit starken Oxidationsmitteln sind Np(VII)-Verbindungen (z. B. Lithiumneptunat(VII), Li5NpO6) erhältlich.

Artikel lesen

Berechnung von Elektrodenpotenzialen mit der nernstschen Gleichung

Mithilfe der nernstschen Gleichung kann das Elektrodenpotenzial beliebiger Elektroden aus der ablaufenden Redoxreaktion berechnet werden. Das Elektroden- bzw. Redoxpotenzial ist ein Maß für das Oxidationsvermögen des Oxidationsmittels in wässriger Lösung. Es ist abhängig vom betrachteten Redoxpaar, den Konzentrationen der an der Redoxreaktion beteiligten Komponenten, der Temperatur und dem Druck (Gaselektroden). Je nach Art des Potenzial bestimmenden Schritts der Redoxreaktion unterscheidet man verschiedene Arten von Elektroden.

Artikel lesen

Nichtmetalle

Zu den Nichtmetallen gehören die Edelgase und die Halogene, sowie Sauerstoff, Schwefel, Selen, Stickstoff, Phosphor, Kohlenstoff und Wasserstoff. Mit Ausnahme des Wasserstoffes sind die nichtmetalle rechts im Priodensysthem der Elemente (PSE) angeordnet. Nichtmetalle sind Gase, Flüssigkeiten oder liegen in kristalliener Form vor. Im Gegensatz zu Metallen leiten die Nichtmetalle den elektrischen Strom und die Wärme im Allgemeinen nur schlecht.

Artikel lesen

Nickel

Nickel ist ein zähes, silberweißes, die Wärme und den elektrischen Strom gut leitendes Element der 8. Nebengruppe. Es reagiert erst bei höheren Temperaturen mit Sauerstoff und den Halogenen. Es werden überwiegend Nickel(II)-Verbindungen gebildet. Nickel wird meist aus sulfidischen Erzen gewonnen und durch thermische Zersetzung von Ni(CO)4 in Reinstnickel überführt. Als Legierungsmetall erhöht es die Härte, Zähigkeit und Korrosionsbeständigkeit von Stahl (Nickel- und Chrom-Nickel-Stahl). Es ist ein wichtiger Hydrierungskatalysator.

Artikel lesen

Niobium

Niobium ist ein stahlgraues, korrosionsbeständiges, duktiles Schwermetall der 5. Nebengruppe, von dem sich Verbindungen überwiegend mit der Oxidationsstufe +V ableiten. Es kommt als Eisenniobat (Columbit) vor und ist immer mit Tantal vergesellschaftet. Die Trennung der Elemente kann durch fraktionierte Kristallisation der Fluorometallate(V) erfolgen. Aus NbF lässt sich das Metall durch Reduktion mit Natrium gewinnen. Niobium ist ein wichtiger Legierungsbestandteil bei der Herstellung temperaturbeständiger Werkstoffe.

Artikel lesen

Nobelium

Nobelium wurde 1957 künstlich hergestellt. Es ist das 13. Element der Gruppe der Actinoide. Mit einer Valenzelektronenkonfiguration [Rn] 5f147s2 bildet es überwiegend Verbindungen der Oxidationsstufe II. Die No2+- Ionen sind in Wasser stabil. Die Chemie des Elementes ähnelt der des Strontiums. Eingehende Kenntnisse über die physikalischen und chemischen Eigenschaften liegen noch nicht vor.

Artikel lesen

Osmium

Osmium ist ein sprödes, hochschmelzendes Edelmetall der 8. Nebengruppe. Das Metall ist chemisch resistent und löst sich bei 20 °C auch nicht in Königswasser.
Die wichtigsten Oxidationsstufen sind +IV und +VIII. Oberhalb von 300 °C reagiert Osmium mit Sauerstoff unter Bildung des giftigen Tetraoxids OsO4.
Der Einsatz des Osmiums in der Technik ist auf wenige Schwerpunkte begrenzt.
Einige besonders harte Legierungen enthalten Osmium.

Artikel lesen

Palladium

Palladium ist ein silberweißes, dehnbares Edelmetall (8. Nebengruppe). Nach aufweändiger Trennung von den anderen Edelmetallen wird (NH4)2[PdCl6] abgeschieden und mit Wasserstoff zum Metall reduziert. Durch ein heißes Pd-Blech diffundiert Wasserstoff sehr leicht und kann so von anderen Gasen getrennt werden. Die wichtigsten Oxidationsstufen in den Pd-Verbindungen sind +II und +IV. Wie die anderen Edelmetalle der 8. Nebengruppe dient Palladium als Katalysator (z. B. Olefinoxidation) und als Legierungsmetall..

Artikel lesen

Periodizität der Eigenschaften von Elementen

Das von MENDELEJEW formulierte Gesetz der Periodizität besagt, dass sich die Eigenschaften der Elemente periodisch – also regelmäßig wiederkehrend - in Abhängigkeit von den Atomgewichten bzw. Massen ändern. Damit ist gemeint, dass in den Perioden und Hauptgruppen des PSE immer wiederkehrende Tendenzen der Elementeigenschaften zu beobachten sind. Dazu gehören die Änderungen der Atomradien, der Elektronegativität, des Metallcharakters und der Wertigkeit der Elemente.
Heute wissen wir, dass die Ursachen für die periodische Änderung der Eigenschaften im inneren Aufbau der Atome also der Kernladungszahl und der Besetzung der Elektronenschalen zu suchen sind.

Artikel lesen

Phosphor

Phosphor ist ein reaktionsfähiges Nichtmetall, das in verschiedenen Modifikationen (weißer, schwarzer, violetter Phosphor) vorliegen kann. In der Natur kommt Phosphor hauptsächlich in Form von Phosphaten vor, aus denen er bei hohen Temperaturen durch Reduktion mit Kohlenstoff gewonnen wird. Die Oxidationsstufen +III und +V sind bei dem Element der V. Hauptgruppe besonders häufig. Phosphate finden als Dünger Verwendung. Phosphor ist ein biologisch bedeutsames Element (Knochen, Zähne, DNA, Energieträger ATP).

Artikel lesen

Platin

Platin ist ein dehnbares graues Edelmetall der 8. Nebengruppe. Die wichtigsten Oxidationsstufen sind +II (z. B. PtCl2) und +IV (z. B. PtO2). Die Gewinnung von Platin erfolgt hauptsächlich aus den bei der Kupfer- und Nickelproduktion anfallenden Edelmetallkonzentraten. Verwendung findet Platin als Katalysatormetall (z. B. Oxidation von NH3, Autoabgasreinigung), zur Herstellung von widerstandsfähigen Pt/Au-Legierungen und in der Schmuckindustrie.

Artikel lesen

Plutonium

Plutonium ist das mit der höchsten Ordnungszahl in der Natur vorkommende Element. Es ist das 5. Element der Gruppe der Actinoide. Das silberweiße, radioaktive Schwermetall ist in verdünnten Säuren löslich und bildet überwiegend Pu(IV)-Verbindungen. Verbindungen mit den Oxidationszahlen III, V, VI und VII sind ebenfalls bekannt. Plutonium neigt zur Bildung von Komplexen, z. B. [Pu(NO3)4(TBP)2] (TBP - Tributylphosphat), was zur Abtrennung des Elementes aus Kernbrennstäben genutzt wird. Plutonium wird bei der Bestrahlung von 238U mit Neutronen gewonnen. Das Isotop 239Pu unterliegt oberhalb einer kritischen Masse von 5,4 kg einer spontanen Ketten-Kernreaktion. Das Metall kann aus PuF4 durch Reduktion mit Calcium gewonnen werden. Verwendet wird das Metall als Energiequelle in Reaktoren. Einen Einsatz in Kernwaffen gilt es weltweit zu verhindern.

Artikel lesen

Polonium

Polonium ist ein silberglänzendes Schwermetall der 6. Hauptgruppe. Es ist radioaktiv; das stabilste Isotop hat eine Halbwertszeit von 103 Jahren. Die chemischen Eigenschaften ähneln denen des Tellurs. Es sind Verbindungen mit den Oxidationsstufen -II (PoH2), +II (PoS), +IV (PoO2) und +VI (PoF6) bekannt, wobei die Stufe +VI instabil ist. Durch Bestrahlen von Bi mit Neutronen kann es in Mengen bis zu 10 g gewonnen werden. Verwendet wird Polonium u. a. in der Radiobiologie und in der Strahlenchemie als α-Strahler.

Artikel lesen

Praseodymium

Praseodym ist das 2. Element der Reihe der Lanthanoide. Es ist ein silberglänzendes Schwermetall, das überwiegend Pr(III)-Verbindungen bildet. Auch einige Pr(IV)-Verbindungen sind bekannt. Das Metall löst sich in verdünnten Mineralsäuren, unter Bildung von gelbgrünen Pr3 +-Ionen. Praseodym wird bei Raumtemperatur von Luftsauerstoff angegriffen. Die Gewinnung des Metalls kann durch Schmelzflusselektrolyse von PrCl3 erfolgen. Einige Praseodym-Verbindungen werden für optische Zwecke genutzt.

Artikel lesen

Promethium

Promethium ist ein silberweißes radioaktives Schwermetall; das 4. Element der Gruppe der Lanthanoide. Das langlebigste Isotop hat eine Halbwertszeit von 17,7 Jahren. Die Verbindungen leiten sich von der Oxidationsstufe III ab. Das Metall lässt sich aus Abbränden der Kernreaktoren gewinnen, wobei nach entsprechender Aufarbeitung Promethiumoxid, Pm2O3, mit Calcium reduziert wird. Verwendet wird Promethium u. a. als β-Strahlenquelle.

Artikel lesen

Protactinium

Protactinium ist ein radioaktives, grau glänzendes Schwermetall. Es ist das 2. Element der Gruppe der Actinoide. In seinen Verbindungen tritt es häufig in der Oxidationsstufe V auf. In wässriger Lösung können farblose PaO2 +-Ionen vorliegen. Durch Zink können Pa(V)- zu Pa(IV)-Verbindungen reduziert werden. In der Pechblende bildet sich das Element durch Zerfall des Nuklids 235U. Das Metall und seine Verbindungen haben gegenwärtig nur eine geringe technische Bedeutung.

Artikel lesen

Periodensystem der Elemente

Das Periodensystem der Elemente ist heute ein ganz wichtiges Arbeitsmittel für jeden, der sich mit der Chemie beschäftigt. In ihm sind die Elemente in Abhängigkeit von ihrem Bau angeordnet. Daher kann man aus dem Periodensystem wesentliche Fakten zum Atombau der Elemente und daraus resultierend über die Eigenschaften der Elementsubstanzen ablesen.
An der Entwicklung des Periodensystems der Elemente haben viele bekannte Wissenschaftler mitgearbeitet. Klicken Sie auf das nebenstehende Bild, um ein Vollbild des Periodensystems zu sehen. Dort können Sie für jedes Element zahlreiche Informationen abrufen. Durch Klicken auf die einzelnen Elementsymbole erhalten Sie Informationen zu wichtigen Eigenschaften der Elektronenkonfiguration, Vorkommen, Verbindungen und den wichtigsten Anwendungen. Außerdem sind jeweils die wichtigsten Stoffkonstanten und die Häufigkeit des Vorkommens in der Natur angegeben. Dazu gehört auch eine Übersicht über die häufigsten Isotope der einzelnen Elemente und einen kurzen historischen Abriss über die Entdeckung des jeweiligen Elements.

Artikel lesen

Das quantenmechanische Atommodell

Die von dem britischen Physiker ERNEST RUTHERFORD (1871-1937) im Jahr 1911 und von dem dänischen Physiker NIELS BOHR (1885-1962) im Jahr 1913 angegebenen Atommodelle waren wichtige Schritte in der Entwicklung von Vorstellungen über den Atombau. Aber auch das bohrsche Atommodell erwies sich schnell ist nicht ausreichend für die Erklärung von Sachverhalten. Insbesondere die Annahme von bestimmten Bahnen für die Elektronen war mit den Erkenntnissen der Quantenphysik nicht vereinbar. In den 20er-Jahren des 20. Jahrhunderts wurde ein quantenmechanisches Atommodell entwickelt, das auch als Orbitalmodell bezeichnet wird. Es ist ein mathematisches Modell, das sich der grafischen Veranschaulichung weitgehend entzieht. Es beruht auf quantenphysikalischen Erkenntnissen.

Artikel lesen

Quecksilber

Quecksilber ist ein silberglänzendes, bei Raumtemperatur flüssiges, edles Schwermetall der 2. Nebengruppe. Es wird meist aus Zinnober, HgS, gewonnen. Infolge seiner Toxizität wird die Verwendung in Thermometern, Barometern und Batterien schrittweise eingeschränkt. Zur Herstellung von Amalgamen und bei noch genutzten Chloralkalielektrolysen (Amalgamverfahren) findet das Metall Verwendung. Quecksilber liegt in seinen Verbindungen in den Oxidationsstufen +II (HgCl2, HgO) und +I (Hg2SO4) vor, wobei letztere Hg2 -Ionen enthalten. Erst oberhalb von 300°C reagiert das Metall mit Sauerstoff.

Artikel lesen

Radium


Radium ist ein Element des Periodensystems. Jedes Element weist aufgrund seines Atombaus bestimmte physikalische und chemische Eigenschaften auf. Den Atombau und die Eigenschaften findest du im Artikel. Er enthält außerdem das Energieniveauschema und Informationen über die Entdeckung, Herstellung und Verwendung.

Artikel lesen

Radon

Radon ist ein einatomiges, radioaktives Edelgas. Es sind nur wenige Verbindungen, z. B. RnF2, bekannt. Radon bildet sich beim Zerfall von Radium und seinen Verbindungen und wird u. a. in der Medizin als α-Strahlenquelle eingesetzt. Da das Gas, an feinsten Partikeln adsorbiert, nach dem Einatmen größtenteils in den Lungen verbleibt, erfolgt dort eine hohe Strahlenbelastung und -schädigung.

Seitennummerierung

  • Previous Page
  • Seite 31
  • Seite 32
  • Aktuelle Seite 33
  • Seite 34
  • Seite 35
  • Seite 36
  • Next Page

1168 Suchergebnisse

Fächer
  • Chemie (1168)
Klassen
  • 5. Klasse (568)
  • 6. Klasse (568)
  • 7. Klasse (568)
  • 8. Klasse (568)
  • 9. Klasse (568)
  • 10. Klasse (568)
  • Oberstufe/Abitur (599)
Ein Angebot von

Footer

  • Impressum
  • Sicherheit & Datenschutz
  • AGB
© Duden Learnattack GmbH, 2025