Direkt zum Inhalt

3 Suchergebnisse

Alle Filter zurücksetzen
Artikel lesen

Kollinearität von Punkten (und Vektoren)

Punkte bezeichnet man als kollinear, wenn sie auf ein und derselben Geraden liegen. Zwei (verschiedene) Punkte sind stets kollinear, da sie eindeutig eine Gerade bestimmen.
Vektoren, deren Repräsentanten auf einer Geraden bzw. auf parallelen Geraden liegen, werden als kollineare Vektoren bezeichnet.

Die Lage eines Punktes P zu einer Geraden g (Lagebeziehung von Punkt und Gerade) kann auf verschiedene Weise untersucht werden. Im Folgenden wird dies – getrennt für die Ebene und den Raum – an Beispielen demonstriert.

Artikel lesen

Linear unabhängige Vektoren (Linearkombination)

Es seien a 1 → ,       a 2 → ,       ...,       a n → Vektoren eines Vektorraumes V (mit o → als dem Nullvektor).

  • Die Vektoren a 1 → ,       a 2 → ,       ...,       a n → heißen genau dann linear unabhängig, wenn die Gleichung λ 1 a 1 → + λ 2 a 2 → + ... + λ n a n → = o → nur für λ 1 = λ 2 = ... = λ n = 0 erfüllt ist.
    Anderenfalls heißen die Vektoren a 1 → ,       a 2 → ,       ...,       a n → linear abhängig.
Artikel lesen

Eigenschaften des Vektorprodukts

Für das Vektorprodukt gelten das Alternativgesetz und das Distributivgesetz.
Das Assoziativgesetz dagegen trifft im Allgemeinen nicht zu.
Geometrische Anwendungen sind neben der Berechnung des Flächeninhalts (von Parallelogrammen) das Bestimmen des Schnittwinkels zweier Ebenen, das Ermitteln des Normalenvektors einer Ebene oder das Berechnen des Abstands zweier windschiefer Geraden.

3 Suchergebnisse

Fächer
  • Mathematik (3)
Klassen
  • Oberstufe/Abitur (3)
Ein Angebot von

Footer

  • Impressum
  • Sicherheit & Datenschutz
  • AGB
© Duden Learnattack GmbH, 2025