Direkt zum Inhalt

8 Suchergebnisse

Alle Filter zurücksetzen
Artikel lesen

Gradmaß, Bogenmaß

Eine Möglichkeit, eine Maßeinheit zum Messen von Winkeln zu erhalten, ist die Teilung eines Kreises durch Radien in deckungsgleiche Teile (Kreissektoren). Dies führt zum Gradmaß.
Wählt man den Radius 1 (also den Einheitskreis), kann zu jedem Winkel α die Länge des Kreisbogens b angegeben werden.
Das Bogenmaß b eines Winkels α ist die Maßzahl der Länge des zugehörigen Kreisbogens auf dem Einheitskreis.

Artikel lesen

Bogenmaß

Zwischen der Größe des Winkels α eines Kreissektors und der Länge b des zugehörigen Bogens besteht eine umkehrbar eindeutige Beziehung. Bezeichnet u die Länge des Umfangs des gesamten Kreises (mit dem Radius r), so gilt:
  b   :   u = α   :   360 °
Mit u = 2 π ⋅ r folgt hieraus:
  b   :   2 π r = α   :   360 °
bzw.
  b = π 180 ° r ⋅ α
Bildet man nun das Verhältnis b r , so ist dies wegen b r = π 180 ° ⋅ α nur von der Größe des Winkels α abhängig. Zu jedem Winkel α , dessen Größe in Gradmaß angegeben ist, gehört also ein eindeutig bestimmter Wert des Verhältnisses b r , der sich mittels π 180 ° ⋅ α berechnen lässt.

Artikel lesen

Quadrantenbeziehungen

Für Winkel x mit π 2 < x < 2   π lassen sich aufgrund der Definitionen der Sinus-, der Kosinus- und der Tangensfunktion Zusammenhänge zwischen den Werten dieser Funktionen aus dem I. und dem II. bis IV. Quadranten ableiten. Man nennt diese Zusammenhänge Quadrantenbeziehungen.

Artikel lesen

Größen zur Beschreibung der Rotation

Die translatorische Bewegung eines Körpers kann mit den Größen Weg, Geschwindigkeit und Beschleunigung beschrieben werden. Analog dazu kann man die Bewegung eines rotierenden starren Körpers mit den Größen Drehwinkel, Winkelgeschwindigkeit und Winkelbeschleunigung beschreiben. Teilweise werden auch die Größen Umlaufzeit und Drehzahl mit genutzt. In der Dynamik kommen als weitere Größen das Drehmoment und das Trägheitsmoment hinzu.

Artikel lesen

Winkelfunktionen am Kreis

Jedem spitzen Winkel in einem rechtwinkligen Dreieck sind umkehrbar eindeutig Seitenverhältnisse zugeordnet, die man als Sinus, Kosinus, Tangens bzw. Kotangens des betreffenden Winkels bezeichnet. Es handelt sich hierbei also um Funktionen mit der Menge der Winkel 0 < x < π 2 als Definitionsbereich und der Menge der Seitenverhältnisse als Wertebereich.
Damit eine Zahl-Zahl-Beziehung entsteht, verwenden wir das Bogenmaß der Winkel.

Artikel lesen

Wissenstest - Winkel und Winkelpaare

Hier kannst du dich selbst testen. So kannst du dich gezielt auf Prüfungen und Klausuren vorbereiten oder deine Lernerfolge kontrollieren.

Multiple-Choice-Test zum Thema "Mathematik - Winkel und Winkelpaare".

Viel Spaß beim Beantworten der Fragen!

WISSENSTEST

Artikel lesen

Trigonometrische Gleichungen

Trigonometrische Gleichungen (goniometrische Gleichungen) sind solche Gleichungen, in denen die Unbekannte im Argument von Winkelfunktionen vorkommt.

Artikel lesen

Winkelfunktionen

Die bezüglich eines rechtwinkligen Dreiecks formulierten Definitionen des Sinus und des Kosinus (wie auch des Tangens und des Kotangens) eines Winkels können auf einen beliebigen Kreis oder speziell auch auf einen Einheitskreis (also einen Kreis mit dem Radius r = 1 Längeneinheit) übertragen werden.

8 Suchergebnisse

Fächer
  • Mathematik (7)
  • Physik (1)
Klassen
  • 5. Klasse (6)
  • 6. Klasse (6)
  • 7. Klasse (6)
  • 8. Klasse (6)
  • 9. Klasse (6)
  • 10. Klasse (6)
  • Oberstufe/Abitur (2)
Ein Angebot von

Footer

  • Impressum
  • Sicherheit & Datenschutz
  • AGB
© Duden Learnattack GmbH, 2025