Direkt zum Inhalt

6 Suchergebnisse

Alle Filter zurücksetzen
Artikel lesen

Potenzfunktionen, allgemein

Funktionen mit Gleichungen
der Form y = x n     ( x   ∈ ℝ ,     n ∈   ℤ )
heißen Potenzfunktionen.
Es ist zweckmäßig, eine Einteilung der Potenzfunktionen in Abhängigkeit vom Exponenten n vorzunehmen.

Artikel lesen

Ungerade Potenzfunktionen

Funktionen mit Gleichungen der Form y = x n     ( x   ∈ ℝ ,     n ∈   ℤ ) heißen Potenzfunktionen.
Ist der Exponent n in y = f ( x ) = x n eine ungerade Zahl (n = 2k + 1 mit k ∈ ℤ ), so liegen ungerade Funktionen vor.

Artikel lesen

Trigonometrische Gleichungen und Taschenrechner

Trigonometrische Gleichungen (goniometrische Gleichungen) sind solche Gleichungen, in denen die Unbekannte im Argument von Winkelfunktionen vorkommt. Mithilfe eines Taschenrechners lassen sich derartige Gleichungen lösen. Auf dem Taschenrechner sind die Funktionen, mit denen man bei bekanntem Wert einer trigonometrischen Funktion zum Winkel findet, durch die Bezeichnungen arc sin, arc cos oder arc tan gekennzeichnet. Arkusfunktionen sind die Umkehrfunktionen der trigonometrischen Funktionen.

Artikel lesen

Natürliche Logarithmen

Logarithmen mit der Basis e (der eulerschen Zahl) heißen natürliche Logarithmen.
Die Funktion y = ln     x ist die Umkehrfunktion der Exponentialfunktion y = e x .

Artikel lesen

Allgemeine Wurzelfunktionen

Funktionen mit Gleichungen der Form   y = f ( x ) = x m n   ( x ≥ 0 ;       m ,   n ∈ ℕ ;     m ≥ 1 ;     n ≥ 2 )
heißen Wurzelfunktionen.
Wurzelfunktionen sind spezielle Potenzfunktionen, wenn man als Exponenten nicht nur ganze Zahlen, sondern auch gebrochene Zahlen zulässt:
  x m n = x m n   ( x ≥ 0 ;     m ,   n ∈ ℕ ;     m ≥ 1 ;     n ≥ 2 )
Als Wurzelfunktionen bezeichnet man im weiteren Sinne ebenfalls alle Funktionen, in deren Funktionsterm das Argument x als Bestandteil eines Wurzelradikanden auftritt, z. B. also:
  f ( x ) = x − 2 4 ,     g ( x ) = 5 4 − x 3

Artikel lesen

Spezielle Wurzelfunktion

Besonders häufig treten Funktionen mit Gleichungen der Form y = f ( x ) = x 2 = x auf. Die Funktion f ( x ) = x ist die Umkehrfunktion (inverse Funktion) zu y = g ( x ) = x 2 , jedoch nur für x ≥ 0 , da die Gleichung g ( x ) = x 2 keine umkehrbar eindeutige (eineindeutige) Zuordnung beschreibt.

6 Suchergebnisse

Fächer
  • Mathematik (6)
Klassen
  • 5. Klasse (6)
  • 6. Klasse (6)
  • 7. Klasse (6)
  • 8. Klasse (6)
  • 9. Klasse (6)
  • 10. Klasse (6)
  • Oberstufe/Abitur (3)
Ein Angebot von

Footer

  • Impressum
  • Sicherheit & Datenschutz
  • AGB
© Duden Learnattack GmbH, 2025