Direkt zum Inhalt

5 Suchergebnisse

Alle Filter zurücksetzen
Artikel lesen

Grenzwerte von Zahlenfolgen

Unter dem Grenzwert einer Zahlenfolge ( a n ) versteht man eine Zahl g mit folgender Eigenschaft:
Für jedes ε > 0 liegen fast alle Glieder der Zahlenfolge in der
ε -Umgebung von g, d.h., von einem bestimmten n an gilt |   a n − g   | < ε .
Zahlenfolgen mit dem Grenzwert 0 heißen Nullfolgen

Artikel lesen

Monotonieverhalten von Funktionen

Im Folgenden soll der Zusammenhang zwischen Monotonie und 1. Ableitung untersucht werden.

Artikel lesen

Zahlenfolgen

Eine Funktion, deren Definitionsbereich die Menge der natürlichen Zahlen (oder eine Teilmenge davon) ist und die eine Teilmenge der reellen Zahlen als Wertebereich besitzt, wird (reelle) Zahlenfolge genannt.
Unter der n-ten Partialsumme s n einer Zahlenfolge ( a n ) versteht man die Summe der Folgenglieder von a 1 bis a n .

Artikel lesen

Arithmetische Zahlenfolgen

Eine Zahlenfolge, für die a n = a 1 + ( n − 1 ) d gilt, heißt arithmetische Folge.
Eine arithmetische Folge ist dadurch charakterisiert, dass aufeinanderfolgende Glieder stes den gleichen Abstand d haben. Jedes Folgeglied (außer dem ersten) ist das arithmetische Mittel seiner benachbarten Glieder.

Artikel lesen

Geometrische Zahlenfolgen

Eine Zahlenfolge, für die a n = a 1 ⋅ q n − 1 gilt, heißt geometrische Folge.
Eine geometrische Folge ist dadurch charakterisiert, dass die Folgeglieder jeweils durch Multiplikation mit dem konstanten Faktor q aus dem vorhergehenden Glied entstehen.
Jedes Folgenglied (außer dem ersten) ist das geometrische Mittel seiner beiden Nachbarglieder.

5 Suchergebnisse

Fächer
  • Mathematik (5)
Klassen
  • 5. Klasse (4)
  • 6. Klasse (4)
  • 7. Klasse (4)
  • 8. Klasse (4)
  • 9. Klasse (4)
  • 10. Klasse (4)
  • Oberstufe/Abitur (5)
Ein Angebot von

Footer

  • Impressum
  • Sicherheit & Datenschutz
  • AGB
© Duden Learnattack GmbH, 2025