Direkt zum Inhalt

5 Suchergebnisse

Alle Filter zurücksetzen
Artikel lesen

Koordinatentransformationen

Mitunter erweist es sich als zweckmäßig, den Ursprung des Koordinatensystems zu verschieben oder die Achsen um den Ursprung zu drehen. Dies bzw. eine Kombination aus beiden Bewegungen wird als Koordinatentransformation bezeichnet.
Hierbei sollen folgende Voraussetzungen eingehalten werden:

  1. Die (Rechts-)Orientierung des Systems bleibt erhalten.
  2. Die Skalierung des Systems bleibt erhalten.
Artikel lesen

Ebenengleichungen

Eine Ebene ist durch drei Punkte bzw. einen Punkt und zwei (linear unabhängige) Richtungsvektoren eindeutig bestimmt.
Hieraus resultieren die analytischen Beschreibungsmöglichkeiten durch entsprechende Ebenengleichungen in parameterfreier Form (Koordinatengleichung, Achsenabschnittsgleichung) und in vektorieller Form (Dreipunktegleichung, Punktrichtungsgleichung).

Artikel lesen

Funktionenscharen (Verschiebung, Streckung, Stauchung und Spiegelung von Funktionsgraphen)

In Funktionsgleichungen können Parameter in additiver und multiplikativer Verknüpfung mit Funktionstermen bzw. mit der Funktionsvariablen auftreten. Aus einer Funktionsgleichung y = f   ( x ) entstehen so z.B. die Gleichungen y = f   ( x ) + c , y = f   ( x + d ) , y = a ⋅ f   ( x ) oder y = f   ( b ⋅ x ) .
Diese Parameter haben Einfluss auf Eigenschaften und Verlauf der Graphen der Funktion.

Artikel lesen

Nullstellen trigonometrischer Funktionen

Viele periodische Vorgänge lassen sich durch Funktionen der Form f ( x ) = a ⋅ sin ( b ⋅ ( x − c ) ) beschreiben. Deren Graphen entstehen aus dem Graphen der Sinusfunktion durch Streckung (Stauchung) in Richtung der Koordinatenachsen und Verschiebung in Richtung der x-Achse, woraus sich Schlussfolgerungen für die Nullstellen ziehen lassen.
Für mit anderen Funktionen verkettete Sinus- und Kosinusfunktionen führt das Bestimmen der Nullstellen auf das Lösen goniometrischer Gleichungen.

Artikel lesen

Streckung, Stauchung und Spiegelung von Graphen quadratischer Funktionen

Der Graph einer quadratischen Funktion mit der Gleichung y = f   ( x ) = a x 2 + b x + c ist für a = 1 eine (ggf. verschobene) Normalparabel.
Für a ≠ 1 erhalten wir als Graph im Vergleich zum Graphen von y = f   ( x ) = x 2 + b x + c eine (in y-Richtung) gestreckte bzw. gestauchte und gegebenenfalls an der x-Achse gespiegelte Parabel.

5 Suchergebnisse

Fächer
  • Mathematik (5)
Klassen
  • 5. Klasse (5)
  • 6. Klasse (5)
  • 7. Klasse (5)
  • 8. Klasse (5)
  • 9. Klasse (5)
  • 10. Klasse (5)
  • Oberstufe/Abitur (5)
Ein Angebot von

Footer

  • Impressum
  • Sicherheit & Datenschutz
  • AGB
© Duden Learnattack GmbH, 2025