Direkt zum Inhalt

6 Suchergebnisse

Alle Filter zurücksetzen
Artikel lesen

Kongruenzabbildungen

Eine Kongruenzabbildung (Bewegung) ist eine umkehrbar eindeutige Abbildung der einen Figur F 1 auf eine andere Figur F 2 .
Zwei Figuren F 1 und F 2 sind zueinander kongruent (deckungsgleich) genau dann, wenn sie die gleiche Form und Größe haben.
Schreibweise: F 1 ≅ F 2
Kongruente Figuren lassen sich durch eine Verschiebung, eine Spiegelung, eine Drehung oder eine Zusammensetzung von ihnen aufeinander abbilden.

Artikel lesen

Umkehrfunktion

Eine Funktion heißt umkehrbar eindeutige (eineindeutige) Funktion, wenn nicht nur jedem Argument eindeutig ein Funktionswert zugeordnet ist, sondern auch umgekehrt zu jedem Funktionswert genau ein Argument gehört.

Artikel lesen

Ähnlichkeitsabbildungen

Eine Figur F 1 heißt ähnlich zur Figur F 2 , wenn sie durch eine maßstäbliche Vergrößerung oder Verkleinerung aus F 2 hervorgegangen ist. Das konstante Verhältnis der einander entsprechen Strecken heißt Ähnlichkeitsfaktor k.

Schreibweise: F 1 ~ F 2

Artikel lesen

Lineare Abbildungen

Eine Abbildung f vom Vektorraum V 1 in den Vektorraum V 2 heißt genau dann linear, wenn für alle a → ,   b → ∈ V 1 und r ∈ ℝ gilt:
  (   1   ) f ( a → + b → ) = f ( a → ) + f ( b → )   ( f       i s t       a d d i t i v )   ( 2 ) f ( r a → ) = r f ( a → )   ( f       i s t       hom o g e n )       
 

Artikel lesen

Affine Abbildungen

Eine punktweise Abbildung der Ebene auf sich, die Geraden in Geraden überführt, parallele Geraden in parallele Geraden überführt und teilverhältnistreu ist, heißt affine Abbildung oder Affinität.
Beispiele für Affinitäten sind die Kongruenz- und Ähnlichkeitsabbildungen.

Artikel lesen

Funktionsbegriff

Der Funktionsbegriff ist von zentraler Bedeutung für die gesamte Mathematik und spielt auch bei Anwendungen der Mathematik in Naturwissenschaft und Technik sowie in Wirtschaft und Gesellschaft eine wichtige Rolle. Seine Entwicklung zur heute gebräuchlichen Form hat Jahrhunderte gedauert. Die Namen bekannter Mathematiker sind mit diesem Prozess eng verbunden.
Unter einer Funktion f versteht man eine eindeutige Zuordnung (Abbildung), die jedem Element x aus einer Menge D f eindeutig ein Element y aus einer Menge W f zuordnet. D f heißt der Definitionsbereich, W f der Wertebereich der Funktion f. Man nennt x ∈ D f ein Argument, das zugeordnete Element y ∈ W f den Funktionswert von x bei der Funktion f. Als Kurzschreibweise gibt man die Funktionsgleichung u.a. in der Form y = f ( x ) an.

6 Suchergebnisse

Fächer
  • Mathematik (6)
Klassen
  • 5. Klasse (3)
  • 6. Klasse (3)
  • 7. Klasse (3)
  • 8. Klasse (3)
  • 9. Klasse (3)
  • 10. Klasse (3)
  • Oberstufe/Abitur (3)
Ein Angebot von

Footer

  • Impressum
  • Sicherheit & Datenschutz
  • AGB
© Duden Learnattack GmbH, 2025