Direkt zum Inhalt

2 Suchergebnisse

Alle Filter zurücksetzen
Artikel lesen

Kenngrößen von Zufallsgrößen

Eine Zufallsgröße wird vollständig durch ihre Verteilungsfunktion beschrieben. Diese gibt an, welche Werte die Zufallsgröße annehmen kann und mit welchen Wahrscheinlichkeiten sie dies tut.
In der Praxis möchte man allerdings meist mit möglichst wenigen, aber typischen Angaben auskommen, denn oftmals reicht schon eine grobe Vorstellung von der Zufallsgröße aus. Es kommt hinzu, dass die Verteilungsfunktion mitunter gar nicht oder nur schwer bestimmbar ist.

Man sucht deshalb nach Kenngrößen (manchmal spricht man auch von Parametern), die einen hinreichenden Aufschluss und eine quantitative Charakterisierung einer Zufallsgröße ermöglichen. Dies leisten Kenngrößen wie Erwartungswert, Median und Modalwert sowie die Streuung (bzw. Varianz) der Zufallsgröße.
Zur Charakterisierung der Asymmetrie einer Zufallsgröße benutzt man darüber hinaus die Kenngröße Schiefe. Eine Definition dieser Kenngröße geht auf den Vater der mathematischen Statistik KARL PEARSON (1857 bis 1936) zurück.

Artikel lesen

Boxplots

Unter Boxplots oder Kastenschaubildern versteht man eine Form der grafischen Darstellung von Häufigkeitsverteilungen, in der neben dem Median als Bezugspunkte außerdem der größte und der kleinste Ausprägungswert sowie die Quartile (Viertelwerte) vermerkt sind.

Die Boxplotdarstellung ist ein gutes Hilfsmittel für den Vergleich von Verteilungen, da man erkennt, welchen Bereich (welche Spannweite) die ermittelten Daten einnehmen, ob die Verteilung bezüglich des Medians symmetrisch, rechts- oder linksschief ist usw.

2 Suchergebnisse

Fächer
  • Mathematik (2)
Klassen
  • 5. Klasse (3)
  • 6. Klasse (3)
  • 7. Klasse (3)
  • 8. Klasse (3)
  • 9. Klasse (3)
  • 10. Klasse (3)
  • Oberstufe/Abitur (2)
Ein Angebot von

Footer

  • Impressum
  • Sicherheit & Datenschutz
  • AGB
© Duden Learnattack GmbH, 2025