Direkt zum Inhalt

2 Suchergebnisse

Alle Filter zurücksetzen
Artikel lesen

Dreiecksverteilung (simpsonsche Verteilung)

Die Dreiecksverteilung wird in den meisten Lehrbüchern zur Stochastik kaum erwähnt bzw. nur am Rande behandelt. Das mag seinen Grund darin haben, dass diese Verteilung kein eigenständiges, aus der Praxis stammendes Anwendungsgebiet besitzt.
Die erste Abhandlung über diese Form der Verteilung von Zufallsgrößen in der Geschichte der Wahrscheinlichkeitstheorie stammt vom englischen Mathematiker THOMAS SIMPSON (1710 bis 1761), deshalb spricht man mitunter auch von der simpsonschen Verteilung.

Artikel lesen

Kenngrößen von Zufallsgrößen

Eine Zufallsgröße wird vollständig durch ihre Verteilungsfunktion beschrieben. Diese gibt an, welche Werte die Zufallsgröße annehmen kann und mit welchen Wahrscheinlichkeiten sie dies tut.
In der Praxis möchte man allerdings meist mit möglichst wenigen, aber typischen Angaben auskommen, denn oftmals reicht schon eine grobe Vorstellung von der Zufallsgröße aus. Es kommt hinzu, dass die Verteilungsfunktion mitunter gar nicht oder nur schwer bestimmbar ist.

Man sucht deshalb nach Kenngrößen (manchmal spricht man auch von Parametern), die einen hinreichenden Aufschluss und eine quantitative Charakterisierung einer Zufallsgröße ermöglichen. Dies leisten Kenngrößen wie Erwartungswert, Median und Modalwert sowie die Streuung (bzw. Varianz) der Zufallsgröße.
Zur Charakterisierung der Asymmetrie einer Zufallsgröße benutzt man darüber hinaus die Kenngröße Schiefe. Eine Definition dieser Kenngröße geht auf den Vater der mathematischen Statistik KARL PEARSON (1857 bis 1936) zurück.

2 Suchergebnisse

Fächer
  • Mathematik (2)
Klassen
  • 5. Klasse (1)
  • 6. Klasse (1)
  • 7. Klasse (1)
  • 8. Klasse (1)
  • 9. Klasse (1)
  • 10. Klasse (1)
  • Oberstufe/Abitur (2)
Ein Angebot von

Footer

  • Impressum
  • Sicherheit & Datenschutz
  • AGB
© Duden Learnattack GmbH, 2025