Direkt zum Inhalt

4 Suchergebnisse

Alle Filter zurücksetzen
Artikel lesen

Asymptoten der Hyperbel

Als einziger Kegelschnitt besitzt die Hyperbel ein Paar Asymptoten. Deren Gleichungen lassen sich wie im Folgenden skizziert bestimmen.

Artikel lesen

Grenzverhalten von Funktionen

Zusammenhänge aus verschiedensten Praxisbereichen lassen sich mithilfe von Funktionen beschreiben und dadurch bezüglich bestimmter Eigenschaften untersuchen. Neben anderen Eigenschaften kann dabei auch das Grenzverhalten von Funktionen, also die Veränderung ihrer Werte für unbegrenzt wachsende bzw. fallende Argumente bedeutsam sein.

Artikel lesen

Asymptoten (asymptotische Linien)

Untersucht man ganzrationale Funktionen für beliebige große bzw. kleine x-Werte, so werden auch die Funktionswerte beliebig groß oder klein:
Für x → ±   ∞ gilt |   f ( x )   | = +   ∞ .

Völlig verschieden davon ist das Verhalten gebrochenrationaler Funktionen der Form
f(x) = p(x) q(x) .

Deren Graphen schmiegen sich für beliebig groß bzw. klein werdende Argumente immer mehr an eine Gerade an. Derartige Geraden werden Asymptoten des Graphen der Funktion genannt. Man unterscheidet zwischen waagerechten (horizontalen) und schiefen Asymptoten sowie asymptotischen Linien bzw. Kurven.

Anmerkung: Gelegentlich werden auch die Polgeraden bei vorhandenen Definitionslücken als senkrechte (vertikale) Asymptoten bezeichnet.

Artikel lesen

Ganzrationale Funktionen

Eine Funktion f , deren Funktionsterm ein Polynom ist, heißt ganzrationale Funktion (bzw. Polynomfunktion).
Ganzrationale Funktionen haben die folgende Form:
  f ( x ) = a n x n + a n − 1 x n − 1 + ... + a 2 x 2 + a 1 x + a 0           ( mit        n ∈ ℕ        und        a i ∈ ℝ )
Ist a n ≠ 0 , so hat f den Grad n .

4 Suchergebnisse

Fächer
  • Mathematik (4)
Klassen
  • Oberstufe/Abitur (4)
Ein Angebot von

Footer

  • Impressum
  • Sicherheit & Datenschutz
  • AGB
© Duden Learnattack GmbH, 2025