Direkt zum Inhalt

7 Suchergebnisse

Alle Filter zurücksetzen
Artikel lesen

Geschwindigkeit

Die Geschwindigkeit gibt an, wie schnell oder wie langsam sich ein Körper bewegt. Sie ist eine gerichtete (vektorielle) physikalische Größe und hat damit in jedem Punkt der Bewegung eines Körpers einen bestimmten Betrag und eine bestimmte Richtung.
Formelzeichen: v

Einheiten:ein Meter je Sekunde (1 m/s) 
 ein Kilometer je Stunde (1 km/h) 


Bei der Bestimmung und bei der Angabe von Werten für die Geschwindigkeit ist zwischen der Durchschnittsgeschwindigkeit und der Augenblicksgeschwindigkeit zu unterscheiden.

Artikel lesen

Geschwindigkeitsmessung

Geschwindigkeitsmessungen können in unterschiedlicher Weise vorgenommen werden. Neben der klassischen Bestimmung der Geschwindigkeit aus Weg und Zeit kann die Geschwindigkeit mit Tachometern, Fahrradcomputern, Induktionsschleifen, Laserpistolen oder durch Radarmessungen ermittelt werden.
Dabei ist zwischen der Durchschnittsgeschwindigkeit und der Augenblicksgeschwindigkeit (Momentangeschwindigkeit) zu unterscheiden.

Artikel lesen

Die Geschwindigkeit

Die Geschwindigkeit gibt an, wie schnell oder wie langsam sich ein Körper bewegt. Sie ist eine vektorielle physikalische Größe und hat damit in jedem Punkt der Bewegung eines Körpers einen bestimmten Betrag und eine bestimmte Richtung.

Formelzeichen:v
Einheiten:

ein Meter je Sekunde (1 m/s)
ein Kilometer je Stunde (1 km/h)

Die Geschwindigkeit eines Körpers kann in unterschiedlicher Weise bestimmt werden. Dabei st zwischen der Durchschnittsgeschwindigkeit und der Augenblicksgeschwindigkeit zu unterscheiden.

Artikel lesen

Lagebeziehungen von Geraden im Raum

Im dreidimensionalen Raum gibt es für zwei Geraden g und h folgende Lagemöglichkeiten:

  1. g und h sind identisch;
  2. g und h sind zueinander (echt) parallel;
  3. g und h haben genau einen Punkt gemein (schneiden einander);
  4. g und h sind zueinander windschief.
Artikel lesen

Ableitung einer Funktion

Existiert an der Stelle x 0 des Definitionsbereiches einer Funktion f der Grenzwert
  lim h → 0 f ( x 0 + h ) − f ( x 0 ) h ,
so wird dieser als Ableitung oder Differenzialquotient von f an der Stelle x 0 bezeichnet.
Die Ableitung gibt den Anstieg des Funktionsgraphen an der Stelle x 0 an.

Artikel lesen

Ableitungen höherer Ordnung

Höhere Ableitungen einer Funktion f gestatten Rückschlüsse auf den Verlauf des Funktionsgraphen.
Ein Beispiel praktischer Anwendung höherer Ableitungen stellt die Untersuchung von Bewegungsabläufen in der Physik (etwa der Anfahrfunktion eines Kraftfahrzeuges) dar. Geschwindigkeit und Beschleunigung sind hier als erste bzw. zweite Ableitung des Weges nach der Zeit definiert.

Artikel lesen

Weg-Zeit-Diagramme

In einem Weg-Zeit-Diagramm ist für die Bewegung eines Körpers der Zusammenhang zwischen dem von ihm zurückgelegten Weg s und der Zeit t dargestellt. Man bezeichnet ein solches Diagramm auch als s-t-Diagramm, t-s-Diagramm oder Zeit-Weg-Diagramm.
Die Graphen haben je nach der Art der Bewegung einen jeweils charakteristischen Verlauf. Der Anstieg eines Graphen ist gleich der Geschwindigkeit, wobei man aus dem Graphen sowohl eine Durchschnittsgeschwindigkeit als auch die Momentangeschwindigkeit zu einem bestimmten Zeitpunkt ermitteln kann.

7 Suchergebnisse

Fächer
  • Mathematik (3)
  • Physik (4)
Klassen
  • 5. Klasse (2)
  • 6. Klasse (2)
  • 7. Klasse (2)
  • 8. Klasse (2)
  • 9. Klasse (2)
  • 10. Klasse (2)
  • Oberstufe/Abitur (5)
Ein Angebot von

Footer

  • Impressum
  • Sicherheit & Datenschutz
  • AGB
© Duden Learnattack GmbH, 2025