Direkt zum Inhalt

3 Suchergebnisse

Alle Filter zurücksetzen
Artikel lesen

Goniometrische Gleichungen mit einer Winkelfunktion

Goniometrische (trigonometrische) Gleichungen sind Gleichungen, in denen die Variable im Argument von Winkelfunktionen vorkommt. Ein allgemeines Verfahren zur direkten Bestimmung der Lösung oder der Lösungen einer goniometrischen Gleichung gibt es nicht, - oft sind die Lösungen nur durch Näherungsverfahren zu ermitteln.
Goniometrische Gleichungen mit nur einer Winkelfunktion und gleichem Argument lassen sich manchmal relativ einfach lösen (etwa indem sie durch Substitution auf algebraische Gleichungen zurückgeführt werden). Treten verschiedene Argumente auf, so kann durch Anwenden von Additionstheoremen und Winkelbeziehungen versucht werden, eine Gleichung mit Winkelfunktionen des gleichen Arguments zu erreichen.

Artikel lesen

Grafisches Lösen von Gleichungen

Gleichungen, für die exakte Lösungsverfahren nicht bekannt oder zu zeitaufwendig sind, lassen sich oft mit hinreichender Genauigkeit grafisch lösen.

Dabei geht man von der zu lösenden Bestimmungsgleichung zur entsprechenden Funktionsgleichung über, stellt (unter Verwendung eines Taschenrechners) eine Wertetabelle auf und zeichnet den Graphen der Funktion.

Die Abszissen der Schnittpunkte des Funktionsgraphen mit der x-Achse, also die Nullstellen, sind die Lösungen der Gleichung. Man liest sie näherungsweise ab. Die Genauigkeit beim Ablesen kann verbessert werden, wenn die Funktion in einem immer engeren Intervall um die Nullstelle herum dargestellt wird.

Das Vorgehen beim grafischen Lösen von Gleichungen soll im Folgenden durch ein Beispiel verdeutlicht werden.

Artikel lesen

Der Fundamentalsatz der Algebra

Welche Aussagen kann man über die Lösungen ganzrationaler Gleichung n-ten Grades der Form
  ∑ i   =   0 n a i x i = a 0 + a 1 x + a 2 x 2 + ... + a n − 1 x n − 1 + a n x n = 0 ;   ( n ∈ ℕ       u n d       a n ≠ 0 )
im Bereich der reellen bzw. im Bereich der komplexen Zahlen treffen?

3 Suchergebnisse

Fächer
  • Mathematik (3)
Klassen
  • 5. Klasse (18)
  • 6. Klasse (18)
  • 7. Klasse (18)
  • 8. Klasse (18)
  • 9. Klasse (18)
  • 10. Klasse (18)
  • Oberstufe/Abitur (3)
Ein Angebot von

Footer

  • Impressum
  • Sicherheit & Datenschutz
  • AGB
© Duden Learnattack GmbH, 2025