Direkt zum Inhalt

Pfadnavigation

  1. Startseite
  2. Physik Abitur
  3. 4 Elektrizitätslehre und Magnetismus
  4. 4.1 Das elektrische Feld
  5. 4.1.2 Elektrische Felder
  6. Elektrisches Feld

Elektrisches Feld

Das elektrische Feld ist ein bestimmter Zustand des Raumes um einen geladenen Körper. Ein solches elektrisches Feld ist mit unseren Sinnesorganen nicht wahrnehmbar. Es ist aber an seinen Wirkungen erkennbar. Ein elektrisches Feld ist dadurch gekennzeichnet, dass auf andere elektrisch geladene Körper, die sich in ihm befinden, Kräfte ausgeübt werden.
Elektrische Felder können mit dem Modell Feldlinienbild veranschaulicht werden, das auf MICHAEL FARADAY (1791-1867) zurückgeht. Dabei kann man zwischen homogenen und inhomogenen Feldern unterscheiden.
Elektrische Felder können auch mit den Feldgrößen elektrische Feldstärke und dielektrische Verschiebung beschrieben werden.

Schule wird easy mit KI-Tutor Kim und Duden Learnattack

  • Kim hat in Deutsch, Mathe, Englisch und 6 weiteren Schulfächern immer eine von Lehrkräften geprüfte Erklärung, Video oder Übung parat.
  • 24/7 auf Learnattack.de und WhatsApp mit Bildupload und Sprachnachrichten verfügbar. Ideal, um bei den Hausaufgaben und beim Lernen von Fremdsprachen zu unterstützen.
  • Viel günstiger als andere Nachhilfe und schützt deine Daten.
Jetzt 30 Tage risikofrei testen
Your browser does not support the video tag.

Kennzeichnung elektrischer Felder

Bringt man in die Nähe eines geladenen Körpers andere geladene Körper, dann kann man feststellen: Im Raum um einen elektrisch geladenen Körper werden auf andere elektrisch geladene Körper Kräfte ausgeübt. Der Raum befindet sich in einem besonderen Zustand. Er verfügt selbst über physikalische Eigenschaften.
Der Raum um einen elektrisch geladenen Körper wird als elektrisches Feld bezeichnet.
Diese Bezeichnung geht auf MICHAEL FARADAY (1791-1867) zurück, der den Feldbegriff in die Physik eingeführt hat und der damit zugleich eine Vorstellung entwickelte, wie Kräfte zwischen geladenen Körpern wirken (Feldtheorie oder Nahwirkungstheorie). Das stand im Gegensatz zur bis dahin dominierenden Fernwirkungstheorie. Genauere Informationen dazu sind unter den betreffenden Stichwörtern zu finden.

Elektrische Felder sind nur an ihren Wirkungen erkennbar. Diese können je nach den gegebenen Bedingungen sehr unterschiedlich sein:

  • Auf einen geladenen Körper wird im elektrischen Feld eine Kraft ausgeübt.
  • Befinden sich Stoffe im elektrischen Feld, so tritt bei Leitern Influenz (Ladungstrennung) und bei Isolatoren dielektrische Polarisation (Ladungsverschiebung) auf.
  • In geschlossenen Stromkreisen bewirkt ein elektrisches Feld die gerichtete Bewegung von Ladungsträgern (Stromfluss).

Darstellung elektrischer Felder

Ein elektrisches Feld ist mit unseren Sinnesorganen nicht wahrnehmbar. Es ist aber an seinen Wirkungen erkennbar. Bringt man z.B. in den Raum zwischen zwei geladenen Körpern Öl mit Grieskörnchen, dann richten sich diese Grieskörnchen im elektrischen Feld in bestimmter Weise aus (Bild 2). Verbindet man die verschiedenen Punkte miteinander, so kommt man zu einem Feldlinienbild. FARADAY selbst, auf den auch diese Vorstellung zurückgeht, stellte sich die Feldlinien als eine Art Gummibänder vor.

  • Ausrichtung von Grieskörnchen zwischen zwei elektrisch unterschiedlich geladenen Körpern.

    Jens Prockat, Berlin

Einige Eigenchaften des elektrischen Feldes können im Sinne eines Modells mit dem Feldlinienbild veranschaulicht werden. Das Feldlinienbild macht Aussagen über die Beträge und die Richtungen der Kräfte auf einen Probekörper im elektrischen Feld. Wie jedes Modell ist auch das Feldlinienbild eine Vereinfachung der Wirklichkeit. Bei der Nutzung dieses Modells gilt:

  1. Die Feldlinien eines elektrischen Feldes schneiden sich nicht.
  2. Die Feldlinien eines elektrostatischen Feldes, d.h. eines zeitlich konstanten Feldes, stehen immer senkrecht auf der Oberfläche der im Feld befindlichen Körper. Dabei spielt es keine Rolle, ob das Feld von ihnen ausgeht oder auf sie einwirkt.
  3. Je dichter die Feldlinien beieinanderliegen, desto stärker ist dort das elektrische Feld. Die Dichte der Feldlinien ist somit ein Maß für die (relative) Stärke des Feldes.
  4. Um den Feldlinien eine eindeutige Richtung zu verleihen, hat man definiert: Die Feldlinien zeigen von der positiven zur negativen Ladung. Das ist zugleich die Richtung der Kraft, die auf einen positiv geladenen Probekörper wirkt.
  5. Die Feldlinien verlaufen zwischen den Ladungen. Es sind keine geschlossenen Linien. Man bezeichnet deshalb ein elektrisches Feld auch als wirbelfreies Quellenfeld. Wirbelfrei bedeutet: Die Feldlinien sind keine geschlossenen Linien. Quellenfeld bedeutet: Die Feldlinien haben einen Anfang (positive Ladung) und ein Ende (negative Ladung).
  6. Das Feld existiert auch in den Bereichen zwischen den Feldlinien.

Elektrische Felder kann man auch mithilfe der Feldgrößen elektrische Feldstärke und dielektrische Verschiebung beschreiben. Ausführliche Informationen dazu sind in einem gesonderten Beitrag zu finden.

Arten elektrischer Felder

Man unterscheidet grundsätzlich zwischen homogenen und inhomogenen elektrischen Feldern. Ein homogenes elektrisches Feld ist dadurch gekennzeichnet, dass es in allen Stellen gleich stark ist, also die Kraft auf einen Probekörper überall gleich groß ist. Im Modell Feldlinienbild verlaufen die Feldlinien bei einem homogenen Feld parallel zueinander (Bild 4). Ein solches homogenes Feld findet man z.B. zwischen den Platten eines Plattenkondensators. Ein inhomogenes elektrisches Feld liegt vor, wenn das Feld von Ort zu Ort unterschiedlich stark ist, die Kraft auf einen Probekörper an verschiedenen Stellen also unterschiedlich groß ist. Im Modell Feldlinienbild verlaufen die Feldlinien nicht parallel zueinander. Das ist z.B. beim Feld zwischen zwei unterschiedlich geladenen Kugeln oder beim Radialfeld (radiales Feld, radialsymmetrisches Feld) um eine geladene Kugel der Fall (Bild 4) der Fall.

  • Homogene und inhomogene elektrische Felder
Lernhelfer (Duden Learnattack GmbH): "Elektrisches Feld." In: Lernhelfer (Duden Learnattack GmbH). URL: http://www.lernhelfer.de/schuelerlexikon/physik-abitur/artikel/elektrisches-feld (Abgerufen: 09. June 2025, 13:50 UTC)

Suche nach passenden Schlagwörtern

  • Radialfeld
  • inhomogenes Feld
  • Feldtheorie
  • wirbelfreies Quellenfeld
  • homogene elektrische Felder
  • dielektrische Polarisation
  • Influenz
  • Michael Faraday
  • homogenes Feld
  • gerichtete Bewegung von Ladungsträgern
  • Fernwirkungstheorie
  • Stromfluss
  • elektrisches Feld
  • radialsymmetrisches Feld
  • radiales Feld
  • dielektrische Verschiebung
  • inhomogene elektrische Felder
  • elektrischer Felder
  • elektrische Feldstärke
  • Nahwirkungstheorie
  • Modell Feldlinienbild
Jetzt durchstarten

Lernblockade und Hausaufgabenstress?

Entspannt durch die Schule mit KI-Tutor Kim und Duden Learnattack.

  • Kim hat in Deutsch, Mathe, Englisch und 6 weiteren Schulfächern immer eine von Lehrkräften geprüfte Erklärung, Video oder Übung parat.
  • 24/7 auf Learnattack.de und WhatsApp mit Bildupload und Sprachnachrichten verfügbar. Ideal, um bei den Hausaufgaben und beim Lernen von Fremdsprachen zu unterstützen.
  • Viel günstiger als andere Nachhilfe und schützt deine Daten.

Verwandte Artikel

Magnetfeld der Erde

Unsere Erde ist ein großer Magnet. Allerdings ist die mittlere Stärke des Magnetfeldes der Erde relativ gering. Sie beträgt nur etwa 50 mT. Trotz dieses geringen Wertes richtet sich eine frei bewegliche Magnetnadel entsprechend des Verlaufes der Feldlinien aus. Da die geografischen Pole und die Magnetpole der Erde in grober Näherung eine ähnliche Lage haben, kann die Ausrichtung einer Magnetnadel zur Bestimmung der Himmelsrichtung mithilfe eines Kompasses genutzt werden. Das Feld in der Nähe der Erdoberfläche ähnelt dem eines Stabmagneten, in größerer Entfernung treten aufgrund des Sonnenwindes erhebliche Verformungen auf.
Die Lage der Magnetpole ist nicht konstant. In großen Zeiträumen können auch Umpolungen des Erdmagnetfeldes auftreten.

Magnetische Flaschen und magnetische Linsen

Geladene Teilchen, die sich in einem Magnetfeld bewegen, werden durch dieses Magnetfeld aufgrund der dann wirkenden LORENTZ-Kraft beeinflusst. Unter geeigneten Bedingungen bilden die geladenen Teilchen geschlossene Bahnen, werden also durch das Magnetfeld in einem bestimmten Raumbereich gehalten. Man spricht dann von einer magnetischen Flasche.
Die Beeinflussung von bewegten geladenen Teilchen durch Magnetfelder kann auch genutzt werden, um Anordnungen zu schaffen, die auf Elektronen oder andere geladene Teilchen ähnlich wie eine optische Linse wirken. Man spricht dann von einer magnetischen Linse, die z.B. bei Elektronenmikroskopen oder Fernsehbildröhren angewendet wird.

Magnetschwebebahn

Bei der Magnetschwebebahn übernehmen magnetische Kräfte die Aufgaben, die bei der herkömmlichen Eisenbahn Schiene und Räder erfüllen: Sie tragen das Gewicht des Zuges, sorgen für seitliche Führung und übertragen die Antriebs- und Bremskräfte. Zu unterscheiden sind dabei drei verschiedene Techniken des magnetischen Schwebens: das elektromagnetische Schweben (EMS), das seit 1977 in Deutschland weiterentwickelt wird, das in Japan favorisierte elektrodynamische Schweben (EDS) und das permanentmagnetische Schweben (PMS).
2002 wurde der Versuchsbetrieb des in Deutschland entwickelten Transrapid auf der ersten Strecke in Schanghai aufgenommen. Geplant sind auch Strecken im Ruhrgebiet (Metrorapid) und in München als Verbindungsstrecke zwischen Flughafen und Stadtzentrum.

Arbeit und Energie im elektrischen Feld

Befinden sich elektrisch geladene Körper oder Teilchen im elektrischen Feld und sind sie frei beweglich, so wirkt auf sie eine Feldkraft, die Arbeit an diesen Körpern bzw. Teilchen verrichtet. Will man umgekehrt geladene Körper oder Teilchen im Feld bewegen, so muss Arbeit verrichtet werden, wenn die Bewegung entgegen der Feldkraft erfolgen soll. Die erforderliche Feldkraft kann bei einfachen Feldformen berechnet werden.
Wird an geladenen Körpern oder Teilchen mechanische Arbeit verrichtet, so ändert sich ihre Energie. Dabei gilt für den Zusammenhang zwischen Arbeit und Energie der allgemeine Zusammenhang W = Δ E .

Magnetspeicher

Zur Speicherung von Informationen gibt es unterschiedliche Möglichkeiten. Während man bei CDs und DVDs die thermische Verformung feinster Bereiche auf einer Disc („Brennen einer CD oder einer DVD“) nutzt, wendet man bei Festplatten, Disketten unterschiedlicher Bauart, Tonbändern und Videobändern die magnetische Speicherung an. Bei Magnetspeichern wird eine dünne magnetische Schicht durch einen Schreibkopf entsprechend der einzuprägenden Informationen magnetisiert. Durch einen Lesekopf können diese Informationen wieder abgerufen werden.

Ein Angebot von

Footer

  • Impressum
  • Sicherheit & Datenschutz
  • AGB
© Duden Learnattack GmbH, 2025