Direkt zum Inhalt

Pfadnavigation

  1. Startseite
  2. Physik Abitur
  3. 4 Elektrizitätslehre und Magnetismus
  4. 4.5 Elektrische Leitungsvorgänge
  5. 4.5.5 Elektrische Leitungsvorgänge in Halbleitern
  6. Leitung in Halbleitern

Leitung in Halbleitern

Halbleiter sind Stoffe, die bezüglich ihrer elektrischen Leitfähigkeit zwischen der von Isolatoren und der von Leitern liegen. Ihre breite technische Nutzung begann nach der Entdeckung des Transistoreffekts (1948). Ohne die Halbleiterelektronik sind moderne technische Geräte nicht denkbar. Die physikalischen Grundlagen dafür sind elektrische Leitungsvorgänge in Halbleitermaterialien wie Germanium und Silicium, wobei deren Leitfähigkeit durch den gezielten Einbau von Fremdatomen (Dotieren) in weiten Grenzen beeinflusst werden kann. Heute existieren eine Vielzahl von Halbleiterbauelementen für die unterschiedlichsten Anwendungen.

Schule wird easy mit KI-Tutor Kim und Duden Learnattack

  • Kim hat in Deutsch, Mathe, Englisch und 6 weiteren Schulfächern immer eine von Lehrkräften geprüfte Erklärung, Video oder Übung parat.
  • 24/7 auf Learnattack.de und WhatsApp mit Bildupload und Sprachnachrichten verfügbar. Ideal, um bei den Hausaufgaben und beim Lernen von Fremdsprachen zu unterstützen.
  • Viel günstiger als andere Nachhilfe und schützt deine Daten.
Jetzt 30 Tage risikofrei testen
Your browser does not support the video tag.

Einige physikalische Grundlagen

Unter einem Halbleiter versteht man einen Stoff, dessen elektrisches Leitvermögen zwischen dem von Isolatoren und dem von Leitern liegt. Technisch wichtige Halbleiter sind Germanium, Silicium, Selen und Tellur sowie zahlreiche Verbindungen aus Elementen der III. und V. Gruppe sowie der II. und IV. Gruppe des Periodensystems der Elemente (z.B. Galliumarsenid GaAs oder Indiumphosphat InP). Die elektrische Leitfähigkeit bzw. deren Kehrwert, der spezifische elektrische Widerstand, hängt stark von der stofflichen Zusammensetzung und den gegebenen Bedingungen ab.
Allgemein gilt aber für Halbleiter wie für andere Stoffe, dass ein elektrischer Leitungsvorgang nur zustandekommt, wenn die folgenden zwei Voraussetzungen erfüllt sind:

  •  
Es müssen frei bewegliche (wanderungsfähige) Ladungsträger vorhanden sein: In Halbleiter handelt es sich um Elektronen und Defektelektronen, die teilweise vorhanden sind, darüber hinaus aber in unterschiedlicher Weise erzeugt werden können.
  •  
Es muss im betreffenden Raumbereich ein elektrisches Feld existieren: Das wird durch Anlegen einer elektrischen Spannung erreicht.

Der Verlauf des elektrischen Leitungsvorganges in Halbleitern ist ganz allgemein dadurch gekennzeichnet, dass

  •  
sich Elektronen bzw. Defektelektronen (Löcher) unter dem Einfluss des elektrischen Feldes in einer Vorzugsrichtung bewegen;
  •  
die gerichtete Bewegung der Elektronen und Defektelektronen durch die anderen Teilchen des Stoffes behindert wird. Dabei können sehr unterschiedliche Effekte auftreten, z.B. die Abgabe von Wärme oder Strahlung.

Die Atombindung

In reinen Halbleitern - darunter versteht man Halbleiter mit nur sehr wenigen Fremdatomen - liegt eine Atombindung vor. Die Atombindung ist eine der drei chemischen Hauptbindungsarten, zu denen man auch die Ionenbindung und die Metallbindung zählt. Fügen sich mehrere Atome zu einem größeren Verbund zusammen, dann erfolgt dies fast immer so, dass sie durch ihren Zusammenschluss einen energetisch stabilen Zustand erlangen, der auf Bindungskräften zwischen den einzelnen Atomen beruht. Eine Möglichkeit, eine stabile Bindung zu realisieren, besteht für die Atome darin, sich mit benachbarten Atomen Elektronen zu teilen. Nach der Schalentheorie der Atomhülle sind alle äußeren Elektronenschalen, die mit genau acht Elektronen oder einer abgeschlossenen Elektronenhülle besetzt sind, besonders stabil. Allen Atomen, die im Periodensystem der Elemente zu der siebenten Hauptgruppe gehören, fehlt genau ein Elektron zur Erlangung einer abgeschlossenen Achterschale. Indem sie sich mit anderen Atomen ein Elektronenpaar gemeinsam teilen, können sie wechselseitig jeweils paarweise stabile Elektronenanordnungen (Elektronenkonfigurationen) erzielen. Atome, die nicht zur siebenten Hauptgruppe gehören, müssen zur Erlangung eines stabilen Zustandes durch Atombindung unter Umständen mehrere gemeinsame Valenzelektronenpaare bilden. Dies erfolgt zum Beispiel beim Halbleiter Silicium (4. Hauptgruppe) durch jeweils vier Elektronenpaare. Eine Reihe von Eigenschaften der Halbleiter können auf die physikalischen Besonderheiten der Atombindung zurückgeführt werden. Zu diesen Eigenschaften gehören z. B. die geringe elektrische Leitfähigkeit bei reinen Stoffen und die starke Veränderbarkeit der Leitfähigkeit durch Einbau von Stoffen mit anderer chemischer Wertigkeit (Dotieren).

  • Struktur von Silicium, einem technisch wichtigen Halbleitermaterial

Eigenleitung und Störstellenleitung

In reinen Halbleitern sind bei sehr niedrigen Temperaturen praktisch alle Elektronen gebunden. Beim Anlegen einer Spannung fließt kein Strom. Aber bereits bei Zimmertemperatur können aufgrund der thermischen Bewegung Elektronen ihre Bindung verlassen. Im Halbleiter sind dann freie Elektronen und Fehlstellen, die man als Löcher oder Defektelektronen bezeichnet, vorhanden. Diesen Effekt nennt man Paarbildung, den umgekehrten Effekt der Besetzung einer Fehlstelle durch ein Elektron Rekombination. Im statistischen Mittel halten sich Paarbildung und Rekombination die Waage. Es sind aber immer freie Elektronen und Defektelektronen vorhanden.
Bei Anlegen eines elektrischen Feldes bewegen sich die Elektronen in einer Vorzugsrichtung. Sie besetzen Löcher, Bindungen brechen neu auf, es entstehen wieder freie Elektronen und Löcher usw. Insgesamt bewegen sich die Elektronen in der einen und damit die Löcher in der anderen Richtung. Es fließt somit ein Strom, der allerdings in der Regel sehr klein ist. Diese Form der Leitung in Halbleitern wird als Eigenleitung bezeichnet.

  • Eigenleitung in einem Halbleiter

Werden in Halbleiter, z.B. in Silicium, gezielt Fremdatome der III. oder der V. Hauptgruppe des PSE eingebaut, so entstehen im Kristall zusätzliche Fehlstellen oder Störstellen, verbunden mit zusätzlichen freien Elektronen bzw. Defektelektronen. Durch das Dotieren entstehen sogenannten n-Halbleiter bzw. p-Halbleiter (Bild 4) mit einer deutlich höheren Leitfähigkeit als sie das reine Halbleitermaterial hat. Die Leitung, die durch das Dotieren zustandekommt, wird als Störstellenleitung bezeichnet.
Die Leitung in Halbleitern lässt sich auch mit dem Bändermodell erklären. Ausführliche Informationen dazu sind unter diesem Stichwort in einem gesonderten Beitrag auf der CD zu finden.

  • n-Halbleiter und p-Halbleiter entstehen durch Dotieren.

Beeinflussung elektrischer Leitungsvorgänge in Halbleitern

Elektrische Leitungsvorgänge können in vielfältiger Weise beeinflusst werden, z.B. durch Temperatur oder Licht, aber auch durch Druck, Verformung, elektrische und magnetische Felder. Daraus ergeben sich zahlreiche technische Anwendungsmöglichkeiten.
Beispiele für Bauelemente, in denen die Leitfähigkeit durch Wärme bzw. durch Licht beeinflusst wird, sind Thermistoren und Fotowiderstände. In welcher Weise ihre Leitfähigkeit beeinflusst wird, ist in Bild 5 dargestellt.

  • Wichtige Halbleiterbauelemente: Thermistoren und Fotowiderstände

Einige Halbleiterbauelemente im Überblick

In den letzten Jahren sind eine Vielzahl von Halbleiterbauelemente mit speziellen Eigenschaften entwickelt worden. Es ist nicht möglich, diese Vielfalt auch nur annähernd vollständig darzustellen. In Bild 6 sind Repräsentanten wichtiger Gruppen solcher Halbleiterbauelemente zusammengestellt. Zu Halbleiterdioden, Transistoren, Lichtempfängern und Lichtsendern sowie zu ausgewählten Anwendungen (Operationsverstärker, Sensoren, digitale Grundschaltungen) sind Informationen in gesonderten Beiträgen auf der CD zu finden.

  • Überblick über wichtige Halbleiterbauelemente
Lernhelfer (Duden Learnattack GmbH): "Leitung in Halbleitern." In: Lernhelfer (Duden Learnattack GmbH). URL: http://www.lernhelfer.de/schuelerlexikon/physik-abitur/artikel/leitung-halbleitern (Abgerufen: 19. May 2025, 19:19 UTC)

Suche nach passenden Schlagwörtern

  • unipolarer Transistor
  • Fotoelement
  • LED
  • Halbleiter
  • Thermistoren
  • Eigenleitung
  • bipolarer Transistor
  • Elektronenpaar
  • Halbleiterbauelemente
  • Gleichrichterdiode
  • elektrische Leitung in Halbleitern
  • Feldeffekttransistor
  • Loch
  • p-Leitung
  • n-Halbleiter
  • freie Elektronen
  • p-Halbleiter
  • Leuchtdiode
  • Fotowiderstände
  • elektrische Leitungsvorgänge in Halbleitern
  • Defektelektronen
  • Rekombination
  • Lichtemitterdiode
  • n-Leitung
  • Solarzelle
  • Löcher
  • Atombindung
  • Störstellenleitung
  • Valenzelektronenpaare
  • Fotodiode
  • Dotierung
  • Elektronenkonfiguration
  • Paarbildung
  • Dotieren
  • Simulation
  • Bändermodell
Jetzt durchstarten

Lernblockade und Hausaufgabenstress?

Entspannt durch die Schule mit KI-Tutor Kim und Duden Learnattack.

  • Kim hat in Deutsch, Mathe, Englisch und 6 weiteren Schulfächern immer eine von Lehrkräften geprüfte Erklärung, Video oder Übung parat.
  • 24/7 auf Learnattack.de und WhatsApp mit Bildupload und Sprachnachrichten verfügbar. Ideal, um bei den Hausaufgaben und beim Lernen von Fremdsprachen zu unterstützen.
  • Viel günstiger als andere Nachhilfe und schützt deine Daten.

Verwandte Artikel

Das Bändermodell

Das Bändermodell zur Beschreibung elektrischer Leitungsvorgänge hat seine Grundlagen in einer quantenmechanischen Beschreibung der energetischen Zustände fester Stoffe, in denen eine große Zahl von Atomen periodisch angeordnet sind. Es ist ein Modell für die Energiezustände von Elektronen in einem Festkörper und geeignet, die Leitfähigkeit unterschiedlicher Stoffe anschaulich zu beschreiben.
Die für die elektrische Leitung verantwortlichen freien Ladungen verhalten sich im Kristallgitter wie ein Elektronengas. Zwischen seinen Teilchen existiert eine Wechselwirkung, die klassisch durch die elektrostatischen Kräfte verstanden werden kann. Quantenmechanisch beansprucht jedes Elektron wegen der Gültigkeit der Unschärferelation ein eigenes Impulsintervall bestimmter Größe. Im Beitrag wird eine vereinfachte Darstellung des Bändermodells für Leiter, Halbleiter und Nichtleiter gegeben.

Leitung in Flüssigkeiten

In Flüssigkeiten erfolgt nur dann ein Leitungsvorgang, wenn durch Dissoziation frei bewegliche (wanderungsfähige) Ionen vorhanden. Beim Anlegen einer Spannung und damit beim Vorhandensein eines elektrischen Feldes bewegen sich die Ionen gerichtet. Es wird elektrische Energie in thermische Energie umgewandelt. Eine für Anwendungen wichtige Besonderheit bei Leitungsvorgängen in Flüssigkeiten besteht darin, dass mit den Ionen nicht nur ein Transport von Ladungen, sondern auch ein Stofftransport erfolgt. Das wird z.B. beim Galvanisieren oder beim Lackieren von Autoteilen genutzt.

Gleichrichterschaltungen

Gleichrichterschaltungen haben die Aufgabe, aus sinusförmigen Wechselspannungen Gleichspannungen zu erzeugen. Erreichen lässt sich dies mit den unterschiedlichsten Schaltungen, die in zwei Klassen eingeteilt werden können, die der Einweg- und die der Zweiwegschaltungen. Eine exakte Klassifizierung (nach DIN) sowie die Erläuterung der wichtigsten Gleichrichterschaltungen ist Gegenstand dieses Artikels. Darüber hinaus wird an der Einpuls-Einweg-Gleichrichterschaltung exemplarisch eine grafische Methode zur Ermittlung der zeitlichen Verläufe der gleichgerichteten Spannung vorgestellt.

Lichtempfänger und Lichtsender

Lichtempfänger auf Halbleiterbasis sind Fotowiderstände, Fotodioden und Fototransistoren. Während die Fotowiderstände über ihre gesamte Ausdehnung aus einheitlich dotiertem Material bestehen, haben Fotodioden und Fototransistoren pn-Übergänge.
Lichtsender auf Halbleiterbasis sind speziell gestaltete Dioden. Sie werden Lichtemitterdioden (LED), Lumineszenzdioden oder Leuchtdioden genannt, wenn das von ihnen ausgesendete Licht eine inkohärente Strahlung darstellt. Es gibt sie für den Infrarotbereich (IRED) und für den sichtbaren Bereich des Lichtes. Senden sie dagegen kohärentes Licht aus, bezeichnet man sie als Laserdioden.

Sensoren

Sensoren sind Bauelemente oder Schaltungen, die die Aufgabe haben, ein nichtelektrisches Eingangssignal in ein elektrisches Ausgangssignal umzuwandeln. Die Umwandlung von nichtelektrischen Größen (z.B. Temperatur, Beleuchtungsstärke, Kraft, magnetische Feldstärke) in Spannungen bzw. Stromstärke wird genutzt, um physikalische Größen zu messen, Anlagen zu steuern oder Räume und Anlagen zu überwachen. Je nachdem, welche nichtelektrischen physikalischen Größen die Sensoren beeinflussen, unterscheidet man z.B. zwischen Temperatursensoren, optischen Sensoren, Kraftsensoren oder Magnetfeldsensoren.

Ein Angebot von

Footer

  • Impressum
  • Sicherheit & Datenschutz
  • AGB
© Duden Learnattack GmbH, 2025