Direkt zum Inhalt

4 Suchergebnisse

Alle Filter zurücksetzen
Artikel lesen

Unabhängigkeit von (mehr als zwei) Ereignissen

Zwei Ereignisse A und B mit positiver Wahrscheinlichkeit sind genau dann voneinander stochastisch unabhängig, wenn gilt:
  P ( A ∩ B ) = P ( A ) ⋅ P ( B )
Man kann diesen Ansatz auf endlich oder abzählbar viele Ereignisse ausdehnen, wobei der Einfachheit halber vorausgesetzt wird, dass alle betrachteten Ereignisse eine positive Wahrscheinlichkeit besitzen. Dabei ist aber Vorsicht geboten. Es ist zum Beispiel möglich, dass die Ereignisse A 1 ,       A 2 ,       ...,       A n paarweise voneinander unabhängig sind (d.h., je zwei der Ereignisse sind voneinander unabhängig), die Ereignisse A 1 ,       A 2 ,       ...,       A n in ihrer Gesamtheit sind dies aber nicht.

Artikel lesen

Unabhängigkeit von zwei Ereignissen

Im Folgenden soll der Begriff der (stochastischen) Unabhängigkeit von zwei Ereignissen A und B  mit positiven Wahrscheinlichkeiten betrachtet werden.
Die Unabhängigkeit von Ereignissen darf nicht mit der Unvereinbarkeit von Ereignissen verwechselt werden.

Artikel lesen

Der Multiplikationssatz für Ereignisse

In der Praxis steht man oftmals vor der Notwendigkeit, Wahrscheinlichkeiten für Ereignisse der Gestalt A ∩ B zu berechnen. Dies erweist sich aber nicht immer als ganz einfach. Wir betrachten dazu zwei Anwendungsbeispiele.

Artikel lesen

Unabhängigkeit von Zufallsgrößen

Für die Definition der Unabhängigkeit von Zufallsgrößen werden die Ansätze und Erkenntnisse genutzt, die im Zusammenhang mit dem Begriff der stochastischen Unabhängigkeit von Ereignissen gewonnen wurden.
Die Unabhängigkeit von Zufallsgrößen wird als Unabhängigkeit von Ereignissen interpretiert.

4 Suchergebnisse

Fächer
  • Mathematik (4)
Klassen
  • 5. Klasse (2)
  • 6. Klasse (2)
  • 7. Klasse (2)
  • 8. Klasse (2)
  • 9. Klasse (2)
  • 10. Klasse (2)
  • Oberstufe/Abitur (4)
Ein Angebot von

Footer

  • Impressum
  • Sicherheit & Datenschutz
  • AGB
© Duden Learnattack GmbH, 2025